As can be seen in the attached picture “simulation curves”, the signal intensities and line widths clearly differ from each other in the two simulation curves. In addition, the g- and the A-tensor-determined zero-crossings are also no longer quite the same.
Since I have already made a whole series of simulations with the version 5.1.12 (and previous versions), I would like to know what has changed in the calculation method for the simulations or how I can convert/adapted my "old" simulation parameters for the new version 5.2.5.
For better clarity, I also add the simulation code for the simulation curves shown in the attached figure as well as the corresponding verbosity logs for the two versions 5.1.12 and 5.2.5.
Code: Select all
Exp = struct('mwFreq',9.429649,...
'CenterSweep',[336.05 9.9794],...
'nPoints',4096,...
'Harmonic',1,...
'ModAmp',0.02,...
'mwPhase',4.5*pi/180,...
'Temperature',283.15);
Sys1 = struct('S',1/2,...
'g',[2.010695 2.0064 2.0024],...
'Nucs','14N',...
'n',[1],...
'A',[22.37 16.765 105.67317],...
'lwpp',[0.12319 0.00381],...
'tcorr',[28e-12 30e-12 30e-12],...
'DiffFrame',[0 50 0]*pi/180,...
'Exchange',0.0);
chili(Sys1,Exp);
Verbositylogs
Output simulation with EasySpin version 5.1.12:
-- slow motion regime simulation ----------------------------------
field sweep, mw frequency 9.429649 GHz
field range (mT): min 331.159, max 341.138, center 336.149, width 9.9794
field modulation, amplitude 0.02 mT
harmonic 1, perpendicular mode
No ordering potential given, skipping powder simulation.
Solver: Lanczos tridiagonalization, left-to-right continued fraction evaluation
allocation: 5000000 max elements, 200000 max rows
using S=1/2 Liouvillian code
Ordering potential: absent
single-orientation simulation
Setting up basis set...
spatial basis: Leven max 14, Lodd max 7, Kmax 6, Mmax 2, deltaK 1, jKmin +1
spin basis: pSmin +0, pImax 2
M-p symmetry: 0
basis size: 7803
orientation 1 of 1: phi = 0°, theta = 0° (weight 12.5664)
Computing starting vector...
vector size: 7803x1
non-zero elements: 3/7803 (0.04%)
maxabs 0.57735, norm 1
Computing Liouvillian matrix...
size: 7803x7803, maxabs: 1
non-zero elements: 591459/60886809 (0.97%)
Computing spectrum...
converged to within 1e-06 at iteration 60/7803
Convoluting with Gaussian (FWHM 0.145045 mT)...
applying field modulation
-------------------------------------------------------------------
-- slow motion regime simulation ----------------------------------
field sweep, mw frequency 9.429649 GHz
field range (mT): min 331.159, max 341.138, center 336.149, width 9.9794
field modulation, amplitude 0.02 mT
harmonic 1, perpendicular mode
No ordering potential given, skipping powder simulation.
Solver: Lanczos tridiagonalization, left-to-right continued fraction evaluation
allocation: 5000000 max elements, 200000 max rows
using S=1/2 Liouvillian code
Ordering potential: absent
single-orientation simulation
Setting up basis set...
spatial basis: Leven max 14, Lodd max 7, Kmax 6, Mmax 2, deltaK 1, jKmin +1
spin basis: pSmin +0, pImax 2
M-p symmetry: 0
basis size: 7803
orientation 1 of 1: phi = 0°, theta = 0° (weight 12.5664)
Computing starting vector...
vector size: 7803x1
non-zero elements: 3/7803 (0.04%)
maxabs 0.57735, norm 1
Computing Liouvillian matrix...
size: 7803x7803, maxabs: 1
non-zero elements: 589155/60886809 (0.97%)
Computing spectrum...
converged to within 1e-06 at iteration 70/7803
Convoluting with Gaussian (FWHM 0.141289 mT)...
applying field modulation
-------------------------------------------------------------------
-- slow motion regime simulation ----------------------------------
field sweep, mw frequency 9.429649 GHz
field range (mT): min 331.159, max 341.138, center 336.149, width 9.9794
field modulation, amplitude 0.02 mT
harmonic 1, perpendicular mode
No ordering potential given, skipping powder simulation.
Solver: Lanczos tridiagonalization, left-to-right continued fraction evaluation
allocation: 5000000 max elements, 200000 max rows
using S=1/2 Liouvillian code
Ordering potential: absent
single-orientation simulation
Setting up basis set...
spatial basis: Leven max 14, Lodd max 7, Kmax 6, Mmax 2, deltaK 1, jKmin +1
spin basis: pSmin +0, pImax 2
M-p symmetry: 0
basis size: 7803
orientation 1 of 1: phi = 0°, theta = 0° (weight 12.5664)
Computing starting vector...
vector size: 7803x1
non-zero elements: 3/7803 (0.04%)
maxabs 0.57735, norm 1
Computing Liouvillian matrix...
size: 7803x7803, maxabs: 1
non-zero elements: 589155/60886809 (0.97%)
Computing spectrum...
converged to within 1e-06 at iteration 60/7803
applying field modulation
-------------------------------------------------------------------
Output simulation with EasySpin version 5.2.5:
single spin system
component 1: 1 isotopologues
-- slow motion regime simulation ----------------------------------
field sweep, mw frequency 9.429649 GHz
field range (mT): min 331.159, max 341.138, center 336.149, width 9.9794
field modulation, amplitude 0.02 mT
harmonic 1, perpendicular mode
No ordering potential given, skipping powder simulation.
Solver: Lanczos tridiagonalization, left-to-right continued fraction evaluation
allocating memory in blocks of 1000000 non-zero elements
using S=1/2 Liouvillian code
Ordering potential: absent
single-orientation simulation
Setting up basis set...
spatial basis: Leven max 14, Lodd max 7, Kmax 6, Mmax 2, deltaK 1, jKmin +1
spin basis: pSmin +0, pImax 2
M-p symmetry: 0
basis size: 7803
orientation 1 of 1: phi = 0�, theta = 0� (weight 12.5664)
Computing starting vector...
vector size: 7803x1
non-zero elements: 3/7803 (0.04%)
maxabs 0.57735, norm 1
Computing Liouvillian matrix...
size: 7803x7803, maxabs: 1
non-zero elements: 591459/60886809 (0.97%)
Computing spectrum...
converged to within 1e-06 at iteration 60/7803
Convoluting with Gaussian (FWHM 0.145045 mT)...
applying field modulation
-------------------------------------------------------------------
single spin system
component 1: 1 isotopologues
-- slow motion regime simulation ----------------------------------
field sweep, mw frequency 9.429649 GHz
field range (mT): min 331.159, max 341.138, center 336.149, width 9.9794
field modulation, amplitude 0.02 mT
harmonic 1, perpendicular mode
No ordering potential given, skipping powder simulation.
Solver: Lanczos tridiagonalization, left-to-right continued fraction evaluation
allocating memory in blocks of 1000000 non-zero elements
using S=1/2 Liouvillian code
Ordering potential: absent
single-orientation simulation
Setting up basis set...
spatial basis: Leven max 14, Lodd max 7, Kmax 6, Mmax 2, deltaK 1, jKmin +1
spin basis: pSmin +0, pImax 2
M-p symmetry: 0
basis size: 7803
orientation 1 of 1: phi = 0�, theta = 0� (weight 12.5664)
Computing starting vector...
vector size: 7803x1
non-zero elements: 3/7803 (0.04%)
maxabs 0.57735, norm 1
Computing Liouvillian matrix...
size: 7803x7803, maxabs: 1
non-zero elements: 589155/60886809 (0.97%)
Computing spectrum...
converged to within 1e-06 at iteration 70/7803
Convoluting with Gaussian (FWHM 0.141289 mT)...
applying field modulation
-------------------------------------------------------------------
single spin system
component 1: 1 isotopologues
-- slow motion regime simulation ----------------------------------
field sweep, mw frequency 9.429649 GHz
field range (mT): min 331.159, max 341.138, center 336.149, width 9.9794
field modulation, amplitude 0.02 mT
harmonic 1, perpendicular mode
No ordering potential given, skipping powder simulation.
Solver: Lanczos tridiagonalization, left-to-right continued fraction evaluation
allocating memory in blocks of 1000000 non-zero elements
using S=1/2 Liouvillian code
Ordering potential: absent
single-orientation simulation
Setting up basis set...
spatial basis: Leven max 14, Lodd max 7, Kmax 6, Mmax 2, deltaK 1, jKmin +1
spin basis: pSmin +0, pImax 2
M-p symmetry: 0
basis size: 7803
orientation 1 of 1: phi = 0�, theta = 0� (weight 12.5664)
Computing starting vector...
vector size: 7803x1
non-zero elements: 3/7803 (0.04%)
maxabs 0.57735, norm 1
Computing Liouvillian matrix...
size: 7803x7803, maxabs: 1
non-zero elements: 589155/60886809 (0.97%)
Computing spectrum...
converged to within 1e-06 at iteration 60/7803
applying field modulation
-------------------------------------------------------------------