Basically when specifying non-equilibrium populations if hyperfine included pepper produces the incorrect polarization pattern. It appears that pepper is not providing an equal population to the nuclear sub-levels within a electron spin manifold, but rather is filling in the nuclear sub-levels with the populations and that they are equal between the electron spin manifolds.
A sample piece of code is provided. In the absence of hyperfine, both thermal equilibrium and user specified thermal equilibrium show the same absorptive feature. When the hyperfine is turned on, the user specified thermal equilibrium has an emissive/absorptive spectrum.
Code: Select all
clear Sys Exp
Sys.g = 2.01;
Sys.lwpp=0.2;
Exp.Harmonic = 0;
Exp.mwFreq = 9.69;
Exp.Range = [337.5 352.5];
Exp.nPoints = 1024;
% Thermal equilibrium
Exp.Temperature = 85;
[B,therm]=pepper(Sys,Exp);
% user specified thermal equilibrium
Exp.Temperature = [0.9945 1];
[~,non]=pepper(Sys,Exp);
subplot(2,1,1)
plot(B,therm,B,non)
xlim([min(B1)/10 max(B1)/10]);
% Add the Hyperfine
Sys.Nucs = '1H';
Sys.A = 100;
% Thermal equilibrium
Exp.Temperature = 85;
[B,therm]=pepper(Sys,Exp);
% user specified thermal equilibrium
Exp.Temperature = [0.9945 1];
[~,non]=pepper(Sys,Exp);
subplot(2,1,2)
plot(B,therm,B,non)
xlim([min(B1)/10 max(B1)/10]);
legend('Thermal','User Specified')
xlabel('field (mT)')