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The Road to Wisdom. / The road to wisdom? – Well, it’s plain / and
simple to express: / Err / and err / and err again / but less / and less
/ and less.

Piet Hein1 (1905–1996)

There is no science without fancy, and no art without facts.

Vladimir Nabokov2 (1899–1977)

1 “The Road to Wisdom”, Grooks, MIT Press (1966), p. 34
2 “An interview with Nabokov”, Wisconsin Studies in Contemporary Literature 8(2), 140–141 (1967)
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German synopsis
In der Festkörper-EPR sind computergestützte numerische Simulationen unab- Simulationen
dingbar, um verlässlich experimentelle Spektren von ungeordneten Systemen
(Pulvern, Gläser, gefrorenen Lösungen) interpretieren und Rückschlüsse auf die
elektronische Struktur der gemessenen paramagnetischen Substanzen ziehen zu
können. Das Thema dieser Doktorarbeit sind die solchen Simulationen zu Grun-
de liegenden Prinzipien. An vielen Stellen konnten deutliche Verbesserungen
theoretischer und algorithmischer Natur angebracht werden. Diese Verbesserun-
gen bewirken deutlich kürzere Berechnungszeiten und eine allgemeinere An-
wendbarkeit der Simulationsmethoden.

In dieser Arbeit konnten Simulationen von cw-EPR-, ENDOR- und Puls-EPR- Zwei Schritte
Spektren von ungeordneten Systemen unter einem einheitlichen Schema zusam-
mengefasst und algorithmisch gleich behandelt werden. Alle Simulationen beste-
hen aus zwei aufeinanderfolgenden Schritten.

Im ersten Schritt wird – ausgehend vom Spin-Hamiltonoperator und den expe- (1) Peakliste
rimentellen Parametern – eine Liste von spektralen Peaks mit deren Positionen,
Amplituden und Linienbreiten berechnet. Eine Verbesserung für diesen Schritt ist
eine neue, robuste Methode zur Berechnung von Resonanzfeldern für cw-EPR im
Zustandsraum. Für die allgemeine quantenmechanische Berechnung von Puls-
EPR-Linien wurden neue Formeln und ein generischer Algorithmus entwickelt,
der für alle Pulssequenzen gültig ist. Die Liste spektraler Linien, definiert entwe-
der auf einer Magnetfeld- (cw-EPR und Feldscans) oder einer Frequenzachse (al-
le anderen EPR-Varianten), kann interpolativ vergrößert werden. Für Puls-EPR
wurde eine Methode entwickelt, die nur signifikante Linien berechnet und damit
den Simulationszeitaufwand deutlich reduziert.

Im zweiten Schritt wird die so erhaltene Liste spektraler Linien zur Berechnung (2) Konstruk-
tion des
Spektrums

des Spektrums verwendet. Je nach Art des Experiments müssen unterschiedli-
che Methoden benutzt werden. In dieser Arbeit wurde ein neuer Algorithmus
zur Umwandlung von Puls-EPR-Peakdaten in ein Zeitdomänensignal entwickelt,
der Berechnungszeiten verkürzt und die Genauigkeit erhöht.

Die Verbesserungen schließen mit einer Neubewertung der verschiedenen Ori- Netze
entierungsnetze, auf die EPR- und NMR-Simulationen von ungeordneten Syste-
men aufbauen. Zum ersten Mal wurden korrekte Gewichtungsfaktoren für ho-
mogene Netze berechnet. Ein ganz neuer Ansatz wird mit adaptiven Netzen prä-
sentiert. Diese ermöglichen es, der stark schwankenden Abhängigkeit eines EPR-
Spektrums von der Orientierung des paramagnetischen Zentrums Rechnung zu
tragen und nur relevante Orientierungen in die Simulation mit einzubeziehen.
Vor allem bei der Berechnung von stark orientierungsselektiven ENDOR- und
Puls-EPR-Experimenten ergeben sich dadurch deutliche Zeitgewinne.
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Russian synopsis

Äëÿ ïîëó÷åíèÿ èíôîðìàöèè îá ýëåêòðîííîé ñòðóêòóðå ïàðàìàãíèòíûõ
öåíòðîâ

íàäåæíàÿ èíòåðïðåòàöèÿ ñïåêòðîâ ÝÏÐ ýòèõ
öåíòðîâ. Äàííàÿ äèññåðòàöèÿ ïîñâÿùåíà ïðèíöèïàì, ëåæàùèì â îñíîâå

ìîäåëèðîâàíèÿ ñïåêòðîâ ÝÏÐ. Ïðåäëîæåíû ñóùåñòâåííûå
óñîâåðøåíñòâîâàíèÿ êàê â òåîðèè ðàñ÷åòà, òàê è â

Óñîâåðøåíñòâîâàíèÿ ïðèâåëè ê çíà÷èòåëüíîìó óâåëè÷åíèþ ïðîèçâî-
äèòåëüíîñòè âû÷èñëåíèé è ðàñøèðèëè îáëàñòü ïðèìåíèìîñòè ñèìóëÿöèé.

Â äàííîé ðàáîòå ìîäåëèðîâàíèå ñïåêòðîâ íåïðåðûâíîãî è èìïóëüñíîãî
ÝÏÐ è ÄÝßÐ â íåóïîðÿäî÷åííûõ ñèñòåìàõ îñóùåñòâëÿåòñÿ ïî åäèíîé ñõåìå,
äîïóñêàÿ ïðèìåíåíèå îáùèõ âû÷èñëèòåëüíûõ êîöåïöèé. Ìîäåëèðîâàíèå
ïðîâîäèòñÿ â äâà ýòàïà.

Íà ïåðâûì ýòàïå
çàäàííûé ñïèí ãàìèëüòîíèàí

è ýêñïåðèìåíòàëüíûå ïàðàìåòðû. Îäíèì èç óñîâåðøåíñòâîâàíèé íà ýòîì
ýòàïå ÿâëÿåòñÿ íîâûé àäàïòèâíûé ìåòîä äëÿ âû÷èñëåíèÿ çíà÷åíèé ðåçî-
íàíñíûõ ïîëåé â ïðîñòðàíñòâå ñïèíîâûõ ñîñòîÿíèé. Ïîëó÷åíû íîâûå îáùèå
âûðàæåíèÿ äëÿ êâàíòîâî-ìåõàíè÷åñêèõ âû÷èñëåíèé ïèêîâ èìïóëüñíîãî
ÝÏÐ â ÷àñòîòíîé îáëàñòè. Ðàçâèò îáùèé àëãîðèòì, ïðèìåíèìûé êî âñåì
èìïóëüñíûì ïîñëåäîâàòåëüíîñòÿì. Íàáîð ñïåêòðàëüíûõ ïèêîâ, îïðåäå-
ëåííûõ ëèáî êàê ôóíêöèÿ ìàãíèòíîãî ïîëÿ (ñòàíäàðòíûé ÝÏÐ è äðóãèå
ìåòîäû èñïîëçóþùèå ïðîòÿæêó ìàãíèòíîãî ïîëÿ) ëèáî êàê ôóíêöèÿ
÷àñòîòû (âñå äðóãèå ÝÏÐ ýêñïåðèìåíòû), ìîæåò áûòü ðàñøèðåí çà ñ÷åò
èíòåðïîëÿöèè. Ââåäåí íîâûé ïîðîãîâûé ìåòîä äëÿ èìïóëüñíîãî ÝÏÐ,
êîòîðûé âûäåëÿåò è âû÷èñëÿåò òîëüêî òå ðåçîíàíñíûå ïèêè, êîòîðûå äàþò
çíà÷èòåëüíûé âêëàä â ñïåêòð.

Íà âòîðîì ýòàïå íàáîð ñïåêòðàëüíûõ ïèêîâ ïðåîáðàçóåòñÿ â ñïåêòð,
ñðàâíèìûé ñ ýêñïåðèìåíòàëüíûì. Âûáîð ìåòîäà ïðåîáðàçîâàíèÿ çàâèñèò îò
âèäà ýêñïåðèìåíòà. Â äàííîé ðàáîòå ïðåäñòàâëåí íîâûé îáùèé àëãîðèòì
äëÿ ïðåîáðàçîâàíèÿ ñïèñêà ïèêîâ â ñèãíàë âî âðåìåííîé îáëàñòè. Ýòî çíà-
÷èòåëüíî óìåíüøàåò êàê ïîãðåøíîñòè, òàê è âðåìÿ, íåîáõîäèìîå äëÿ ìîäå-
ëèðîâàíèÿ ñïåêòðîâ èìïóëüíîãî ÝÏÐ.

Äðóãèå óñîâåðøåíñòâîâàíèÿ âêëþ÷àþò ïåðåîöåíêó íàèáîëåå ÷àñòî
âñòðå÷àþùèõñÿ â ëèòåðàòóðå îðèåíòàöèîííûõ ñåòîê, èñïîëüçóåìûõ äëÿ
ìîäåëèðîâàíèÿ ñïåêòðîâ ÝÏÐ è ßÌÐ â íåóïîðÿäî÷åííûõ ñèñòåìàõ. Âïåðâûå

â òâåðäûõ íåóïîðÿäî÷åííûõ ñèñòåìàõ (ïîðîøêè, ñòåêëà, çàìîðî-
æåííûå ðàñòâîðû) íåîáõîäèìà

êîìïüþòåðíîãî
êîìïüþòåðíûõ àëãîðèò-

ìàõ.

âû÷èñëÿåòñÿ íàáîð ñïåêòðàëüíûõ ïèêîâ, âêëþ÷àÿ èõ
ïîëîæåíèÿ, àìïëèòóäû è øèðèíû, èñïîëüçóÿ
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Russian synopsis

âû÷èñëåíû îáùèå êîððåêòíûå âåñîâûå ìíîæèòåëè. Ââåäåíà íîâàÿ, â âûñøåé
ñòåïåíè îäíîðîäíàÿ ñåòêà îêòàýäðàëüíîé ñèììåòðèè. Íîâûì ïîäõîäîì
ÿâëÿåòñÿ òàêæå ââåäåíèå àäàïòèâíèõ ñåòîê, êîòîðûå ïîçâîëÿþò àäàïòè-
ðîâàòü ðàçðåøåíèå îðèåíòàöèîííîé ñåòêè ê ïîâåäåíèþ ðåçîíàíñíûõ ôóíê-
öèé è âû÷èñëÿòü òîëüêî òå îðèåíòàöèè, âëàä êîòîðûõ â êîíå÷íûé ñïåêòð
çíà÷èòåëåí. Ýòîò íîâûé ìåòîä èìååò ñóùåñòâåííûå ïðåèìóùåñòâà ïðè
ìîäåëèðîâàíèè ÄÝßÐ è ÝÏÐ ñïåêòðîâ èìåþùèõ ñèëüíóþ óãëîâóþ
çàâèñèìîñòü.
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Synopsis
In solid-state EPR, computer-based numerical simulations are mandatory to re- Simulations
liably interpret experimental spectra of disordered systems (powders, glasses,
frozen solutions) and to obtain information on the electronic structure of the
measured paramagnetic substances. This PhD thesis is concerned with all prin-
ciples underlying such simulations, improving theory and algorithms on many
crucial points. The improvements result in better performance and extended ap-
plicability of the simulations.

In this work, simulations of cw EPR, ENDOR and pulse EPR spectra of dis- Two steps
ordered systems are dealt with under one unifying scheme, allowing the applic-
ation of rather general computational concepts. All simulations proceed in two
steps.

The first step starts from the spin Hamiltonian and the experimental paramet- (1) Peak list
computationers and computes a list of spectral peaks with their positions, amplitudes and

line widths. One improvement for this step is a new adaptive method for com-
puting cw EPR resonance fields in state space. For the quantum-mechanical com-
putations of pulse EPR peaks new general expressions operating in frequency do-
main have been derived. A generic algorithm applicable to all pulse sequences
has been developed. The list of spectral peaks, defined either as a function of
magnetic field (cw EPR and other field scans) or frequency (all other EPR ex-
periments), can be enlarged interpolatively. For pulse EPR a new thresholding
method is introduced, which selects and actually computes only peaks signific-
antly contributing to the spectrum.

In the second step the list of spectral peaks is converted to a spectrum com- (2) Spectrum
constructionparable to the experimental one. The choice of method depends on the nature

of the experiment. In this work a new general algorithm for converting a peak
list to a time-domain signal is presented. It greatly reduced both error and time
consumption of pulse EPR simulations.

Other improvements include a re-evaluation of most published orientational Grids
grids used in EPR and NMR simulations of disordered systems. For the first
time, general correct weighting factors have been computed. A new highly ho-
mogeneous grid with octahedral symmetry is introduced. Adaptive meshes are
presented as a new and promising approach. They allow to adapt the resolution
of the orientational grid to the behaviour of the resonance functions and to com-
pute only orientations relevant to the final spectrum. This new method is very
advantageous for the simulation of strongly orientation-selective ENDOR and
pulse EPR spectra.
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Preface
In addition to articles published in scientific journals, there are two purposes of Purpose
a separately written PhD thesis. First, it collects all the new results—published
piecewise—and puts them into a consistent framework, as far as that is possible.
Second, by including material which is relevant but not new, it collects insight
gained during the work, and helps the reader find his way across the fragmented
world of publications on the topic.

This work is not entirely written in formal language. A large fraction of the text Language
might be in line with the strict standards of scientific publishing, but some con-
cepts are treated in a more sloppy way. They have to be taken con alcuna licenza.
If more concise formulations of the content are sought, I recommend reading the
cited publications. When writing the following pages, it was relieving not having
to observe strictly the dry code of scientific text-casting. Still, given the subject,
this text cannot possibly be considered elegant prose.

Not only the form, but also the content and the emphasis of this thesis differ Level
from a scientific publication. A beginning PhD student should be able to read
this PhD thesis with little prior knowledge on computational EPR and to learn
all that is needed for successfully simulating EPR spectra. Details about spectral
simulations are scattered in the literature, so this collective overview can be very
handy. I hope the work comes up to its premises and proves useful. Simulation
of magnetic resonance spectra in powders is the province of a few specialists, but
this work should address a larger audience.

This booklet puts forward a concise description how to numerically compute Contents
solid-state EPR, ENDOR and pulse EPR spectra of disordered systems from spin
Hamiltonian parameters. After setting the scene by introducing the field of com-
putational EPR and explaining in some detail the core concept of the spin Hamil-
tonian in Chapter 1, Chapter 2 collects old and new methods for the computation
of peak positions and amplitudes for all common EPR experiments, including
cw EPR, ENDOR and pulse EPR. Chapter 3 contains a lot of new material and
explains how a set of peaks characterised by spectral positions, amplitudes and
widths is converted to a spectrum comparable to that obtained experimentally.
In Chapter 4, orientational distributions are discussed and analysed in unpreced-
ented detail. A new orientational grid is presented, and the concept of adaptive
meshes is introduced. Such meshes are state of the art in numerical electro- or
hydrodynamics for the solution of differential equations in 3D space. This PhD
thesis applies the concept to EPR and shows its clear advantages.

There remains, however, a lot to be done. Pulse EPR simulation techniques are Outlook
still far from being fast and accurate enough to allow spectral fitting. In ESEEM,

xiii



Preface

amplitudes of simulated spectral peaks often are not close to those measured,
even when peak positions and shapes match. A systematic comparison of exper-
imental data to simulated spectra combined with careful analysis to identify the
shortcomings of the current theory has still to be done. There is much latitude in
improvement of the adaptive mesh methods proposed in this work.

Most of the theoretical and algorithmical concepts developed in this PhD thesisEasySpin
have been tested and implemented in the program package EasySpin, a collection
of functions for Matlab, a numerical computation environment. Besides spectral
simulation functions, functionality for making basic spin physical computations
and for spectral analysis is included. EasySpin is freely available1 and currently
used worldwide in established EPR labs. It is briefly described in Chapter 5.

Some other simulation software packages are available2, but their scope is
much more limited than EasySpin. The only commercial undertake similar to
EasySpin is XSophe, a simulation program covering cw EPR only. It has been de-
veloped by Bruker Biospin GmbH (Germany) together with the group of Graeme
Hanson at the University of Queensland (Australia) [Gri99].

Nowadays scientific research is unimaginable without the use of the internet.Internet
It gives the critical and screening user access to invaluable resources, although
many times one fishes in superficial, incomplete or wrong information. But
people, databases, library catalogues, usenet forums, online book shops and a
host of other resources collected through the Internet foster interactive and inter-
disciplinary thinking in an unprecedented way.

In this place I would like very much to thank all those who have patientlyThanks
and efficiently accompanied my work. Above all I wish to thank my supervisor
Arthur Schweiger, who made it possible for me to carry out research in the field
of computational EPR. I am also indebted to Sabine Van Doorslaer, now at the
University of Antwerp, for her numerous and valuable hints and encouraging
comments. I am grateful also to all the other members in my research group3 who
have contributed very much to create a pleasant working atmosphere. Last but
not least I wish to express special thanks to Daniella Goldfarb for her hospitality
and help during my stay at the Weizmann Institute of Science.

1 http://www.esr.ethz.ch
2 A partial list is: EPR-NMR (John Weil and Michael Mombourquette, University of Saskatchewan,

Canada), Igor pro (John Boswell, Oregon Health & Science University, USA), GENDOR (Brian
M. Hoffman, Northwestern University, IL, USA), Simfonia (Bruker, Germany), MSPEN/MSGRA
(Jürgen Hüttermann, Universität des Saarlandes, Germany), QPOW (Mark J. Nilges, University
Illinois at Urbana-Champain, IL, USA), MAGRES (Ed J. Reijerse, University of Nijmegen, Nether-
lands), SIM/SIMSPC (Høgni Weihe, University of Copenhagen), tryscore (Daniella Goldfarb, Weiz-
mann Institute of Science, Israel). There are many programs from earlier times in the EPR Software
database at http://epr.niehs.nih.gov/software.html

3 Carlos Calle, Cinzia Finazzo, Jeff Harmer, George Mitrikas, Alex Angerhofer, Moritz Kälin, Matvey
Fedin, Igor Gromov, Anna Ferretti, Boris Epel, Rafail Rakhmatoullin, Inés García Rubio, Lorenz
Liesum, Rüdiger Eichel, Josef Granwehr, Zoltan Mádi. Walter Lämmler, Barbara Feurer, Jörg Forrer,
Willi Groth, Irène Müller.
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1 Introduction

New in this chapter:

. A general two-step scheme for the computation of all EPR spectra

In this introductory chapter we give a general overview of computational EPR1 Outline
and its two sub-disciplines, structural and spectral simulations. We show that
spectral simulations in EPR can be generally divided into two equally import-
ant steps linked by the peak list, a concept central to this entire thesis. Then we
present the core physical model behind all EPR spectra, the spin system, and its
associated mathematical realisation, the spin Hamiltonian. This model depends
on a host of magnetic parameters which we shall list and describe shortly. In
reality, any parameter will not have a single value, but a discrete or continuous
distribution. We discuss these distributions, with special emphasis on the orient-
ational distribution giving rise to powder spectra.

1.1 Computational EPR

In experimental EPR, spectra of paramagnetic molecules or other paramagnetic Structural
informationcentres are measured and used to derive structural information. This structural

information ranges from the test whether a certain atom is present and close
to the unpaired electron to detailed angular and distance information between
atoms. Sometimes the electron density distribution around the paramagnetic
centre can be mapped out.

The interpretation of an EPR spectrum can be anything between trivial and im- Spectral
interpretationpossible, depending on the complexity of the measured molecular structure, the

complexity of the experiment and the resolution and S/N ratio of the spectrum.
The quantum-mechanical theory underlying EPR is reasonably well understood,
and many simple spectra can be analysed by means of compact analytical formu-
las derived from the basic equations [Sch01]. For more complex systems, which
are the rule rather than the exception, these formulas are too approximate or even
not valid anymore. In such cases, numerical simulations are the only feasible way

1 In this thesis, EPR is used as a collective term for cw (continuous wave) EPR (electron paramagnetic
resonance), ENDOR (electron-nuclear double resonance) and pulse EPR methods such as ESEEM
(electron spin echo envelope modulation). If specific EPR experiments or spectra are meant, they
are referred to explicitly.
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Figure 1.1: Spectral analysis (normal arrows) and computational synthesis (bold arrows)
of an EPR spectrum.

of extracting magnetic parameters and through them structural information from
EPR spectra.

Although in spectral analysis one starts from a measured spectrum, extractsAnalysis
vs. synthesis the magnetic parameters and then deduces structural information from them,

a numerical approach has to proceed in the opposite direction (see Figure 1.1).
Magnetic parameters can only be computed from a molecular structure, and not
vice versa. Similarly, it is only possible to generally compute spectra from para-
meters and not the other way round.

Eventually, once methods in computational EPR are advanced enough, theyFitting
might operate along the analysis way, taking an EPR spectrum and deriving their
magnetic parameters by means of optimisation routines. These tasks are, how-
ever, extremely difficult, since even an almost noise-free spectrum can be fitted
well with many different sets of magnetic parameters. Many times it is almost
impossible to find or even define a global minimum in parameter space. Most
EPR spectra are not structured enough to allow reliable extraction of all magnetic
parameters. The only way out of this would be a simultaneous fit of spectra ob-
tained at different frequencies or/and with different experimental methods. For
this multi-spectral fitting, however, the simulation of all sorts of EPR spectra has
to be general, robust and quick, which is currently not the case for pulse EPR
spectra.

Computers have already been employed for simulations in EPR for decadesComputers
(see e.g. [Mac69, Tay75, Pil99]). Most of the programs written implemented ana-
lytical formulas which were too complicated to evaluate manually. It is only for a
short time that the basic equations and not special solutions are being implemen-
ted and that a cw EPR (or ENDOR or pulse EPR) spectrum can be derived from
the geometric structure of the paramagnetic centre, at least in principle.

The computational connection between structure and spectrum consists of twoTwo tasks
different tasks. One is to compute magnetic parameters from a given molecular
structure. The structure itself could be arrived at either experimentally or com-
putationally. The second task consists of computing the EPR spectrum from the
magnetic parameter set (see Figure 1.1).

2



1.1 Computational EPR

PSfrag replacements

spin system peak list spectrum

Figure 1.2: General schematics for simulation in structural EPR.

1.1.1 Quantum chemistry

The first step in computing the EPR spectrum from a molecular structure is the Quantum
chemistrycomputation of a set of magnetic parameters which more directly determine the

shape of any EPR spectrum. This falls into the realm of quantum chemistry.
Using methods of various degrees of sophistication (semi-empirical methods,
Hartree-Fock methods, density functional theory, coupled cluster) [Jen99], state
energies and many other observables can be computed from a simple geometric
model of the molecular structure giving nuclear isotopes and their coordinates.
These uniquely determine the molecular Hamiltonian operator. The solution of
the associated Schrödinger equation gives wave functions (or an electron dens-
ity) which unambiguously determine all measurable properties of the system,
including all possible magnetic parameters.

The computation of magnetic parameters (see next section) from a molecular EPR
parametersstructure is a relatively new field in quantum chemistry. Most promising are

methods based on DFT (density functional theory). In NMR they are already
applied with great success, whereas in EPR their accuracy varies strongly. They
are reasonably accurate for organic radicals. For paramagnetic molecules con-
taining transition metal ions, however, results are currently not reliable due to
deficiencies in the theory and the fact that the obtained wave functions are not
accurate enough. None of the available methods gives magnetic parameters con-
sistent with experiments [Mun99, Kau02b]. We will comment on the reliability of
numerical values when discussing the various magnetic parameters in the next
section.

1.1.2 Spectral simulations

The second step in computing the EPR spectrum from a molecular structure is EPR
spectrumthe computation of the EPR spectrum from the magnetic parameters of the para-

magnetic centre (see Figure 1.1). The parameters can be computationally derived,
published and known values, or just educated guesses from measured spectra.
This second step is the subject of the present PhD thesis.

In a very general picture, the numerical computation of a powder spectrum
in EPR can be subdivided into two steps, quite independent of the nature of the
experiment (cw EPR, ENDOR or pulse EPR). This is illustrated in Figure 1.2.

Spin system→ peaks
In the first step, a list of peaks is computed. Each peak p is represented by its Peak list

3
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position yp (either a resonance field or a resonance frequency), its amplitude Ap
and its line width Γp.

peak p : (yp, Ap, Γp) (1.1)

Under many circumstances, peaks can be assumed to have identical line widths
Γ, so that the peak list is simpler

peak p : (yp, Ap) (1.2)

If broadening is absent (Γ = 0), the resulting theoretical spectrum is called a stick
spectrum1.

This peak list contains all physical information about the spectrum, although
not in the final form. The details of the computation of the peak list depend
on the kind of experiment performed. In all cases the computation starts from
the spin Hamiltonian and a set of experimental parameters and uses quantum-
mechanical equations to arrive at the peak list.

There are a host of possibilities to compute the peak data. They can be obtained
ab initio from full analytical formulas (exact or perturbational approximations)
or from a complete numerical treatment. Peaks can also be obtained from other
peaks by interpolation or extrapolation. Methods for computing peaks for most
EPR experiments are dealt with in Chapter 2.

Peaks→ spectrum
The second step takes the peak list and converts it into the final spectrum. This is
a very general procedure, which does not depend on the details of the experiment
or the spin Hamiltonian. It does, however, depend on the mode of measurement
in the experiment. Spectra are either acquired directly in the spectral domain (cw
EPR, ENDOR) or in the inverse (usually time) domain. Only these differences
have to be taken into account. Appropriate methods are discussed in Chapter 3.

The peak list is the central concept in EPR spectral simulations. Constructing it
is a major quantum-mechanical undertaking, whereas converting it to a spectrum
is a purely geometric endeavour.

1.2 Interactions

The EPR spectra of a certain molecule depend on its isotope composition, its geo-Geometric
reach metric structure (both static and dynamic) and its surroundings. But not all geo-

metric parameters are equally relevant to explain EPR spectra. The further away
from the paramagnetic centre atoms, bonds and other spins are, the smaller is
their impact on EPR spectra. Interactions observable in EPR are locally confined
to the paramagnetic centre and have a typical horizon of about 0.5 nm around an
unpaired electron. Interactions between several unpaired electrons can be meas-
ured by EPR up to distances of more than 5 nm.

1 Note that in spectra acquired in time domain there is broadening even in this case due to the nature
of the measurement process.
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Figure 1.3: A network of two electron and two nuclear magnetic moments in an external
magnetic field B and the various magnetic interactions.

All relevant influences are summarised and parameterised in a phenomenolo- Spin
Hamiltoniangical model called the spin Hamiltonian which describes the behaviour of the set

of states observable by EPR. These states are sub-states of the electronic ground
state and are usually due to electronic and nuclear spins interacting with each
other. The spin Hamiltonian is not a full physical model, its purpose is only to
accurately describe and parameterise “interactions” having influence on the mag-
netic resonance spectra. It describes the EPR behaviour of the systems without
bothering about the physical details1.

The general spin Hamiltonian for n electrons and m nuclei with non-zero spins

H = ∑
i 6=j
HEE(Si, Sj) + ∑

i,k
HHF(Si, Ik) + ∑

k 6=l
HNN(Ik, Il)

+ ∑
i

[

HEZ(B, Si) +HZF(Si)
]

+ ∑
k

[

HNZ(B, Ik) +HNQ(Ik)
]

(1.3)

is a sum over interactions between the magnetic momenta of the electron spins
S, the nuclear spins I and the external magnetic field B (see schematic repres-
entation in Figure 1.3). S, I and B are 3-element column vectors. Whereas their
components are real scalars for B, they are operator matrices for S and I. Details
of these spin operators are relegated to Appendix A.
H and its component Hamiltonians have units of energy. In magnetic reson- Units

ance it is more convenient to use them in frequency units

H = H/h (1.4)

with the Planck constant h. In pulse EPR, angular frequency units are often used.
In this text we will use H in normal frequency units throughout except in the
sections on pulse EPR in Chapter 2, where we use angular units.

1 For a lucid and very comprehensive exposition of the concept of spin Hamiltonian in EPR, see
[Rud01]
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In the following we shortly present each interaction and its relation to struc-
tural features. The main purpose is to provide all formulas needed in spectral
simulations. For a more complete theoretical treatment of the interactions, see
[Abr86, Poo87, Pil90, Wei94].

EZ Electron Zeeman interaction

The linear interaction of the paramagnetic centre with the external magnetic field

HEZ(B, S) = hHEZ(B, S) = −BTµe = µBBTgS . (1.5)

is parameterised by the g matrix. µB = 9.27401 · 10−24 J T−1 is the Bohr magneton.
The product µe = −µBgS represents the magnetic moment due to the combina-
tion of spin and orbital angular momentum, which in general is different from
the pure spin angular momentum both in direction and magnitude. Therefore,
HEZ is an effective Hamiltonian1.

For a free electron, the Zeeman interaction is isotropic with scalar g = ge =
2.0023193. For any electron confined to an orbital in a molecular structure, it is
anisotropic, and g is a 3× 3 matrix deviating from ge. For organic compounds the
deviation is small, for transition metal complexes it can be large. The deviation
depends on the nature and symmetry of the spin orbital(s) of the unpaired elec-
tron(s) and on the strength of spin-orbit coupling. This depends on the amount
of mixing between the EPR-observable electronic ground state and any low-lying
excited state. The lower the excited state, the bigger the influence on g.

In its eigenframe representation, g is a diagonal matrixg frame

g =





g1 0 0
0 g2 0
0 0 g3



 = ge13 + ∆g = ge13 +





∆g1 0 0
0 ∆g2 0
0 0 ∆g3



 , (1.6)

where g1, g2 and g3 are the values along the three principal axes of g. These
are orthonormal and are commonly used to define a molecule-fixed reference
coordinate system (see Section 2.1.1). Orientations of other interaction tensors
and matrices are specified relative to this g frame.

The computation of g matrices from molecular orbital data obtained by quan-Numerical
computation tum chemical methods has attracted much interest in recent years (see [Kau02b]

and references therein). The computation of ∆g is particularly demanding, since
∆g is determined by purely relativistic effects, mainly spin-orbit coupling. Meth-
ods differ by the number of terms they include and the level of their treatment
(perturbational or exact). The basis sets employed can have a large impact on the
results. The best agreement with experiment is found for g matrices of organic
and other first-row radicals. Computed values for ∆g usually deviate not more

1 Similarly, S is an effective spin. A related concept is the fictitious spin. See [Rud01] for the differences
between these entities.
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1.2 Interactions

than 50% from experimental ones, in some cases they are accurate to within a few
percent [Kau02a]. For transition metal ions, the situation is much worse. Values
can deviate by up to a factor of 10 [Kau02b]. Occasionally, even the sign is wrong.

HF Hyperfine interaction

The hyperfine term describes the magnetic interaction of an electronic spin S with
a nuclear spin I by means of a 3× 3 matrix A

HHF(S, I) = HHF(S, I)/h = ST AI = ST (aiso13 + T) I . (1.7)

The interaction consists of two components, a dipolar and an isotropic one.
The dipolar interaction (described by the traceless matrix T) acts through space Dipolar

interactiondirectly between the nucleus and the electron (for formulas see [Sch01]). As the
unpaired electron is delocalised in its orbital (single occupied molecular orbital,
SOMO), the dipolar interaction depends on the integral over the SOMO. For orbit-
als with an inversion centre at the nucleus, this interaction vanishes. However, by
virtue of the unpaired electron’s different interaction with electrons of different
spins, it spin-polarises other doubly occupied orbitals. These polarised orbitals
will also interact with the nucleus. For 3d complexes, there is often significant
spin density in the 2p and 3p orbitals [Mun00].

The isotropic interaction (aiso) is due to the finite probability of finding the Isotropic
interactionelectron at the site of the nucleus. Its value is proportional to the spin density at

the nucleus ρ
α−β
n = |Φα(rn)|2 − |Φβ(rn)|2

aiso =
1

3h
µ0µBµngegn〈Sz〉−1ρ

α−β
n . (1.8)

This “Fermi contact” interaction depends again on the symmetry of any spin-
polarised orbitals. If an orbital has a node at the site of the nucleus, any electron
residing in it will have no isotropic interaction with the nucleus. Still, other orbit-
als centred on the same nucleus might become spin-polarised, transferring spin
density from the SOMO to the nucleus. In 3d complexes, this usually proceeds
via 2s and 3s orbitals [Mun00].

Generally the g and A matrices of a paramagnetic centre are not aligned. Since Relative
orientationthe g eigenframe is usually the molecular reference frame (see Section 2.1.1), the

orientation of the A matrix is specified relative to the g frame. If A is in its eigen-
frame, then the g-frame representation Ag is

Ag = R(αA, βA, γA)AR(αA, βA, γA)T (1.9)

with the Euler rotation angles αA, βA and γA (see Appendix C). When using pub-
lished data, the exact definition of the rotation angles has to be carefully checked.

Spin polarisation cannot be accurately modelled with quantum chemical meth- Numerical
computationods, therefore computed hyperfine interaction matrices often deviate strongly

from experimental ones. The situation is worst for transition metal nuclei with
an unpaired electron in an orbital centred at that nucleus [Mun99].
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NZ Nuclear Zeeman interaction

The interaction of a nuclear magnetic moment with the external static field

HNZ(B, I) = hHNZ(B, I) = −BTµn = −µNgnBT I (1.10)

is analogous to that of the electron, with the nuclear spin1 vector I, the nuclear g
factor gn and the nuclear magneton µN = 5.0507866 · 10−27 J T−1.

The sign convention of the g factor in EPR is inconsistent with the conventionSign of ge, gn

for nuclear gn values [Bro00]. According to the definition

µn = µNgn I (1.11)

gn is positive when the magnetic moment µn and the angular momentum I are
parallel, and negative if they are antiparallel. For the electron the sign is different

µe = −µBgS , (1.12)

meaning that g is positive when µe and I are antiparallel. This inconsistency
is regrettable, but we bow to tradition and define the sign of both nuclear and
electron g factors in the conventional way.

gn is a constant depending only on the nuclear isotope. gn can be positive or
negative, its magnitude ranges from 0.01175 for 68Ga to 7.3 for 97Nb. Chemical
shifts (deviations from gn) and chemical shift anisotropies measurable by NMR
are of no relevance in EPR, since they are by orders of magnitude too small to be
resolvable. Theoretically computed values for chemical shifts are quite accurate,
at least in diamagnetic compounds [Sch98].

NQ Nuclear quadrupole interaction

The nuclear angular momentum direction is linked to the actual shape of the nuc-Quadrupole
moment leus, that is, to the axis of symmetry of its charge distribution. When a nucleus

has a spin I ≥ 1, it has an electric quadrupole moment, which causes it to align
along the electric field gradient (EFG) in the surrounding space. In paramagnetic
centres, such electric fields are generated by the nuclei and the electron distribu-
tion in the immediate neighbourhood of the nucleus.

The energy of alignment of a nuclear spin in the total electric field is describedInteraction
term by the nuclear quadruple interaction term

HNQ(I)/h = HNQ(I) = ITPI =
e2qQ

4I(2I − 1)h

[

3I2
z − IT I + η

(

I2
x − I2

y

)]

, (1.13)

where the nuclear quadruple tensor is

P =
e2qQ

4I(2I − 1)h





−(1− η) 0 0
0 −(1 + η) 0
0 0 2



 (1.14)

1 I is not the pure spin, but the total angular momentum of the nucleus, consisting of orbital and spin
momenta of the particles in the nucleus.
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1.2 Interactions

with the magnitude eq of the EFG at the nucleus, its quadrupole moment Q and
the elementary charge e. η is the asymmetry parameter. Note that NQ is an
electric, not a magnetic interaction, in contrast to all other interactions of Eq. (1.3).
In the literature, usually the values of the prefactor in Eq. (1.14) and η are given.
P is transformed from its eigenframe to the g frame in analogy to Eq. (1.9).

P contains through its magnitude and its orientation a wealth of information Numerical
computationon the local surroundings of nuclei in paramagnetic centres. Although EFGs

of small atoms in diamagnetic molecules can be computed quite accurately (see
e.g. [Bai00]), there have been only a few studies involving paramagnetic centres
[Sta02].

NN Nucleus-nucleus interaction

Nuclear spins can couple either directly through space (dipole-dipole interaction)
or by means of the electron orbitals surrounding both of them (J coupling). Both
interactions are anisotropic. The total interaction is described by

HNN(I1, I2)/h = HNN(I1, I2) = IT
1 JI2 . (1.15)

This term is not larger than 100 kHz in magnitude and is usually neglected in
EPR, since it cannot be resolved by most EPR experiments. It contributes to in-
homogeneous broadening, though.

ZF Electron zero field splitting

The fact that the total magnetic moment is due to the sum of spin and orbital an-
gular momenta but described only by the spin operator S leads to the appearance
of a term of the form

HZF(S)/h = HZF(S) = STDS = D
[

S2
z −

1
3

S(S + 1)
]

+ E(S2
x − S2

y) (1.16)

with

D =





Dx 0 0
0 Dy 0
0 0 Dz



 =





− 1
3 D + E 0 0

0 − 1
3 D− E 0

0 0 2
3 D



 . (1.17)

Usually the axes of D are defined such that |Dx| ≤ |Dy| ≤ |Dz|. The ZF term is
formally analogous to the NQ term. Note that it is customary to use the letter D
to indicate both the interaction matrix and one of its two scalar parameter.

A term of the same form appears if two or more electrons interact strongly and
are represented by a single spin S > 1/2 in a coupled representation, e. g. S = 5/2
for high-spin Fe3+ ions. D is transformed from its eigenframe to the g frame in
analogy to Eq. (1.9).

In a very general way the zero field splitting can additionally contain terms S4, S6

with S4 and S6. These are important for high-spin transition and rare earth ions.
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They are summarised in Appendix A on p. 121. For a detailed discussion, see
[Rud87].

There are very few studies with theoretically computed values for D and E,Numerical
computation although the theory was developed some years ago [Nee98]. The reliability of

numerical D values has not yet been studied in detail.

EE Electron-electron interaction

If two electrons interact weakly, they are usually represented by separate spins in
the uncoupled representation. There are two mechanisms by which one electron
can influence the other. One is, as in the case of two nuclei or one nucleus and
one electron, the through-space dipolar interaction. The other is the Heisenberg
exchange interaction. Collectively, the interactions are parameterised in the spin
Hamiltonian by the term

HEE(S1, S2)/h = HEE(S1, S2) = ST
1 XS2 , (1.18)

where X is in general not traceless. For details refer to [Ben90].

1.3 Distributions

The spin Hamiltonian of Eq. (1.3) depends on a set of parameters. This set canParameter
space be visualised as a single point in a multi-dimensional parameter space P , a space

where each dimension represents the possible values of one parameter.
Above absolute zero, molecules are dynamic species and vibrate. Since spin

Hamiltonian parameters depend to some degree on the geometry of the para-
magnetic centre, all parameters are dynamical and change with time.

In solid-state EPR we usually can neglect these dynamic changes, since mostDynamical
regimes measurements are made at temperatures where structural fluctuations are min-

imal. Indeed, most pulse EPR experiments are impossible when centres are com-
pletely mobile. When centres are fully mobile, effective values of parameters
like g and A assume the average of their principal values and become isotropic.
Between the rigid limit and the full motional freedom, there is a region called the
slow motional regime. In the associated temperature ranges interaction tensors
and matrices are only partially averaged out. EPR spectra differ from those in the
rigid limit and contain valuable information [Sch89].

In this thesis, we restrict ourselves to the rigid limit, which assumes that spinRigid limit
Hamiltonian parameters are independent of time or at least change on a timescale
much larger than the experimental one. Macroscopically, the rigid limit is valid
in frozen solutions, crystals, powders and glasses at low temperatures.

In the rigid limit, one paramagnetic centre corresponds to one point in P .Distributed
systems Usual samples contain more than 1010 centres, each one with a slightly differ-

ent structural surrounding. As a consequence of these static structural variations,
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1.4 Powder spectra

each centre corresponds to a different point in P , i.e. each spin Hamiltonian para-
meter may vary from one centre to the other, resulting in an overall distribution
rather than a single point. The result is a so-called inhomogeneous broadening
of the spectrum. In contrast, homogeneous (life-time) broadening is present even
when all centres have exactly the same spin Hamiltonian.

A distinction can be made between the distribution in the orientation of the Orientations
paramagnetic centres and structural distributions resulting in distributions of all
other spin Hamiltonian parameters. There are discrete and continuous orienta-
tional distributions. For a single crystal, paramagnetic centres are aligned along
one of a limited number of symmetry-related orientations with respect to the
crystal system. Anisotropic parameters will assume a small set of different val-
ues associated with these orientations. In powders the orientational distribution
is not discrete, but continuous and uniform. The paramagnetic centres assume
all possible orientations Ω in space. Powders are often referred to as disordered
systems.

Structural variations (also called strains [Hag85b]) in the immediate surround- Strains
ings of a paramagnetic centre cause variations in spin Hamiltonian parameters,
mainly in g, A and D. These distributions are always continuous. The explicit
form of a distribution in one of these parameters depends on the nature of the
structural strains. Since all spin Hamiltonian parameters depend on structural
properties, they are correlated and cannot change independently of each other.
Often distributions are random, so that they can be approximated by Gaussians
(see Appendix B). If a distribution is small in magnitude, it is usually small in
effect and can be incorporated in a linear approximation into the line width (see
Section 2.3). For clearly not random, large, or correlated parameter distributions,
the simulation of the associated spectra must include an explicit integration over
the distribution.

1.4 Powder spectra

From the experimental side, a powder is a collection of a very large number of
paramagnetic centres randomly oriented in space, so that the resulting orienta-
tional distribution is uniform, that is, each orientation has the same probability
of occurring. Only in the infinite limit, however, this distribution is uniform.
Theoretical considerations are always based on the infinite limit. In general, the
resonance position yres(Ω) (field or frequency), the intensity A(Ω) and the line
width Γ(Ω) depend on the relative orientation Ω between molecule and laborat-
ory frame.

The powder spectrum is an integral function1 of field or frequency y. The ker- Density of
statesnel of the integral function is the orientation-dependent single crystal spectrum,

1 Note the subtle difference between an integral F(x) =
∫ x

c f (t) dt and an integral function F(x) =
∫

f (x, t) dt.
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it is integrated1 over all possible orientations of the paramagnetic centre

S(y) =

∮

Ω

A(Ω) f [y− yres(Ω), Γ(Ω)] dΩ . (1.19)

If we neglect, for simplicity, the line width Γ, we obtain the stick spectrum

S(y) =

∮

Ω

A(Ω)δD[y− yres(Ω)] dΩ , (1.20)

with the Dirac delta function2 δD. Eq. (1.20) shows that the stick spectrum is the
total density of states along y for all orientations of the paramagnetic centre.

Using the Heaviside function defined by dH(x)/dx = δD(x), Eq. (1.20) can beSurface
integral rewritten

S(y) =
d

dy

∮

Ω

A(Ω)H[y− yres(Ω)] dΩ (1.21)

and as a consequence

S(y) =
d

dy

∮

yres(Ω)≤y

A(Ω) dΩ . (1.22)

This means that the powder spectrum is a weighted surface integral over all ori-
entations where yres is smaller than the given y. For a given y, the resonance
surface yres(Ω) is divided into regions separated by borders at the contour lines
yres(Ω) = y. The integral describes how the weighted area of the regions with
yres ≤ y changes, when y (the border) is moved.

A third way to look at Eq. (1.20) is the following. Transforming to naturalLine integral
coordinates where n is perpendicular to the contour lines and s parallel to them,
we get

S(y) =
d

dy

∮

yres(Ω)≤y

A(Ω) dsdn =
d

dy

∮

yres(Ω)≤y

A(Ω) ds
dy

|∇yres(Ω)| (1.23)

=
d

dy

y
∫

−∞

∮

yres(Ω)=y

A(Ω)

|∇yres(Ω)| dsdy =

∮

yres(Ω)=y

A(Ω)

|∇yres(Ω)| ds (1.24)

This is a line integral. The powder spectrum (or density of states) at y is the
weighted line integral over the contour line yres = y.

1 There is some ambiguity in the terminology. Are disordered systems described by a powder average
or by a powder integral of N centres? Viewed from the single centres, we are indeed summing up,
but compared to a single crystal with the same number of centres, the powder is an orientational
average. Both terms are sensible and are used without distinction.

2 Note the difference between the Kronecker and Dirac delta functions δ(x) and δD(x). For x 6= 0,
both are zero, whereas for x = 0 we have δ(0) = 1 and δD(0) = ∞.
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New in this chapter:

. Analytical formulas for energy and state derivatives

. A classification of methods for computing cw EPR resonance fields

. A new iterative and very robust method for doing so

. Frequency-domain expressions for the efficient simulation of arbitrary
pulse EPR experiments

. Simulations of pulse EPR spectra in the lab frame

. Monotony-conserving interpolation methods applied to EPR

. Adaptive thresholding in FD pulse EPR computations

In this chapter we will present most ingredients necessary to compute peak po- Outline
sitions and amplitudes (i.e. the peak list) for cw EPR, cw and pulse ENDOR and
any conceivable pulse EPR experiment. In the first section, some basic formulas
are collected. In two separate sections we treat cw EPR and ENDOR peaks. Most
of the rest of the chapter is devoted to pulse EPR peaks. The last two sections
deal with interpolation and thresholding. At the end we make some comments
about performance issues.

2.1 Basics

Although Dirac introduced it first ad hoc into the relativistic Schrödinger equa- Spin
tion, spin is a non-relativistic phenomenon. That was found1 in 1967, but many
textbooks and even monographs still erroneously present it as a relativistic parti-
cle property. Spin-orbit coupling is a relativistic phenomenon, though.

Particles with spin have non-zero magnetic moments, by which they interact. Hilbert
spacesThese interactions (see Chapter 1) are represented by N × N matrices and cause

a splitting of the degenerate spin states |u〉 into N states. A state (ket) is repres-
ented by a normalised complex column vector of dimension N × 1. Its conjugate
transpose (bra) 〈u| = |u〉† is a row vector. Mathematically, the N states span the
state space, which is a Hilbert space of dimension N. A transition between two
states |u〉 and |v〉 can be written either as an N × N matrix |u〉〈v| or as an N2 × 1

1 Lévy-Leblond [Lév67] has shown that the spin can be derived from symmetry properties of the
non-relativistic Schrödinger equation.
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vector |u〉 ⊗ |v〉, where ⊗ is the Kronecker tensor product as defined in Eq. (A.14)
on p. 123. All transitions span another Hilbert space of dimension N2. State space
operators are vectors in this transition (Liouville) space, which are acted upon by
superoperator matrices of dimension N2 × N2.

Spin operators and their matrix representations are standard textbook fare
and are summarised in Appendix A on p. 121. For a good textbook on general
quantum mechanics, see [Sak85]. Liouville space is nicely treated in [Ern89].

2.1.1 Coordinate systems

The spin Hamiltonian depends on the orientation of the spin system in the labor-External fields
atory frame, i.e. its relative orientation with respect to the external field B =
B0 + B1(t) + B2(t), usually consisting of several components: B0 is the static
magnetic field. B1 is the magnetic component of the incident microwave (mw)
radiation. It is usually perpendicular to B0, but some experiments use B1‖B0.
In ENDOR experiments the magnetic component B2 of the additional radio fre-
quency (rf) radiation is perpendicular to B0.

There are two frames used to describe the experimental setup. The laboratoryL and
M frame frame L is defined with

zL‖B0 xL‖B1 yL = zL × xL . (2.1)

The molecular frame M is defined as coinciding with the principal axis system of
the g matrix of the paramagnetic centre (or some other interaction matrix if g is
isotropic). For axial g matrices, zM is usually along g‖, and xM and yM depend
on some other molecular or spin physical direction. For orthorhombic g matrices,
there are three possibilities for alignment of M with g. L and M are related by
three Euler angles φ, θ and χ, so that the L and M representations of a vector v
are1

vL = R(φ, θ, χ)vM and vM = R(−χ,−θ,−φ)vL (2.2)

(see Figure 2.1 and Appendix C).
Of course, the spin Hamiltonian can be formulated in both framesM preferred

HM = FM + BT
MGM HL = FL + BT

LGL . (2.3)

F is independent of the orientation of the external fields and contains all internal
interactions (ZF, EE, HF, NN, NQ), but its representations in L and M are different,
since it contains spin vectors SL or SM. G = (Gx, Gy, Gz)

T describes all Zeeman in-
teractions (EZ, NZ and higher-order terms linear in the magnetic field). It is easier
to use the M representation of all these operators, since then only BM changes if
the spin system is physically rotated, whereas FM and GM do not change. BM is
given by

BM = R(−χ,−θ,−φ)BL . (2.4)

1 These are passive rotations, that is, only the representation of v is changed. v itself remains un-
touched.

14



2.1 Basics

PSfrag replacements

φ φ

θ

θ

χ

χ

xM
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yL, B2

zM

zL, B0

Figure 2.1: Relation between laboratory frame L and molecular frame M with the three
Euler angles φ, θ and χ. This figure is a special case of Figure C.1 (p. 128) with α = φ,
β = θ and γ = χ.

The L unit vectors are in the M frame explicitly given by

xL,M =





cφcθcχ− sφsχ
sφcθcχ + cφsχ
−sφcχ



 yL,M =





−cφcθsχ− sφcχ
−sφcθsχ + cφcχ

sθsχ



 zL,M =





cφsθ
sφsθ

cθ





(2.5)
with the abbreviations cφ = cos φ, sφ = sin φ etc. The three L frame components
of G in M representation are

GxL,M = xT
L,MGM GyL,M = yT

L,MGM GzL,M = zT
L,MGM . (2.6)

With B0,M = B0zL,M we get for the spin Hamiltonian in the absence of radiating Static
Hamiltonianfields

HM = FM + B0zL,MGM = FM + B0(cφsθ GxM + sφsθ GyM + cθ GzM) , (2.7)

which depends only on two of the three Euler angles.
From now on we use all operators and vectors in the M frame representation Notation

and drop all M subscripts. The orientation of the external magnetic field zL will
occasionally be referred to as Ω.

2.1.2 States and energies

In a static external magnetic field, each of the N eigenstates |u〉 of a spin system Degeneracy
points
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PSfrag replacements
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energy contours at B0 = const

Figure 2.2: (a) Contour map of a typical function Eu(B0) on the sphere defined by |B0| =
const. (b) Energy surfaces touching each other in single points. The surface is defined
by Eu(B0)zL with constant B0. A part is sliced out. Note that the 3D spaces in (a) and
(b) are completely different.

has a defined energy (its eigenvalue) Eu, satisfying

H(B0)|u〉 = Eu|u〉 . (2.8)

If all spins in the system are coupled and interact with the external magnetic field
B0, the energies of different states will be different1 for all B0 except possibly for
some isolated points Bd, where two or more energies are degenerate Ev(Bd) =
Eu(Bd). In addition, Eu(B0) is a differentiable function in the entire B0 space
except at Bd. It is physically intuitive that such points of degeneracy are indeed
isolated, since any change of B0 away from Bd will remove the degeneracy via
the Zeeman interaction (if, again, all the spins are coupled).

As a consequence, Ev is either always≥ Eu or always≤ Eu. We can distinguishState ordering
between a higher and a lower state. Hence states can be ordered and labelled
with numbers |1〉, . . . , |N〉 running from lowest to highest energy

E1 < E2 < · · · < EN for B0 6= Bd . (2.9)

Geometrically, Eu(B0) is a scalar field in 3D space. Experimental situationsSurfaces
where the magnitude of B0 is held constant are equivalent to cutting out a sphere
with radius B0 (see Figure 2.2(a)). Energies will have orientation-dependent val-
ues on the sphere surface. They can also be pictured as smooth, closed surfaces
Eu(B0)zL, so-called energy surfaces (see Figure 2.2(b)). Any two surfaces can
touch in single isolated points, but will never cross.

If one varies B0 in a way that it passes through Bd, states |u〉 and |v〉 seem toAnticrossings
cross. Therefore points Bd are usually referred to as “crossings”. Of course, in
the small neighbourhood of Bd, the two eigenvalues Eu and Ev are very close.
This behaviour is usually called “anticrossing”. Note that crossings occur only at
single points, whereas anticrossings occur in the space around these singularities.
Sometimes there are no degeneracy points and the surfaces just come very close,
giving anticrossing regions without crossing points. State vectors change very

1 For the mathematical background, see for example [Kat82], p. 72.
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Figure 2.3: State energies E and state vectors (gray coded lines) as a function of a spin
Hamiltonian parameter p. Transition |1〉 ↔ |2〉 is allowed (a) on the left and forbidden
(f) on the right of the anticrossing, transition |1〉 ↔ |3〉 vice versa.

rapidly in an anticrossing region, as can be seen in Figure 2.3. This implies rapid
changes of transition probabilities.

The properties of the B0 dependence of Eu cannot be generalised to other
Hamiltonian parameters. In many cases, permanent degeneracies occur like for
the system described by H = DS2

z. Here, two energies Eu(D) are degenerate
independent of D.

Due to the finite numerical accuracy of B0, isolated degeneracies in B0 space Numerical
aspectswill never be encountered in numerical computations, except at the uninterest-

ing B0 = 0. We can therefore neglect the existence of crossing points and assume
Eu < Ev for all B0. The finite numerical accuracy can lead to another effect. Very
sharp anticrossings can appear as degeneracies, if the splitting Ev − Eu is smal-
ler than the accuracy of the diagonalisation routine. In spectral simulations, this
sometimes happens with three or more equivalent nuclei with small HF split-
ting. States with small total nuclear magnetic spin quantum number ∑ mI in the
centre of each electron manifold occasionally appear to be degenerate. To avoid
these coincidental degeneracies, the HF constants are changed by a small ran-
dom amount (10−8 relative so as not to hamper the overall accuracy) before the
simulation.

There has been an attempt to determine whether an anticrossing or a real cross- “Tracking”
ing (with degenerate states) occurs between two points in B0 space [Gri90]. By
comparing the character of the eigenstates on the left and on the right, a possible
crossing should be identified, if the eigenvectors exchange their character. But
this is true for very sharp anticrossings as well and depends on the sharpness of
anticrossings compared to the distance between the two field values used.

Sometimes [vV78, Kre91, Mis99] it has been proposed that the Jacobi diagonal- Jacobi
“order”isation method [Gol96] conserves the “right” order of the eigenstates when using

the eigenstates on the left of the (anti)crossing to compute the eigenstates on the
right. It is true that the Jacobi method orders states according to their character
and not their eigenvalues. But in this case the eigenvalues will swap at the anti-
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crossing point, so that E1 < E2 on the left and E1 > E2 on the right. This creates
a false discontinuity and is not correct.

Transitions are labelled by the numbers u and v of the two eigenstates con-Transitions
nected by the transition. Transition frequencies are differences of the associated
energies

∆vu = Ev − Eu . (2.10)

Like the energies, they are analytical functions of B0 and can be pictured as sur-
faces. Since they are differences of the energies, they can cross without complica-
tions for the labelling and the computation.

2.1.3 Perturbation theory

A theoretical concept much applied in simulations of EPR spectra is the classicalClassical PT
Rayleigh-Schrödinger perturbation theory (PT) [Sak85]. Although it was heav-
ily used to derive approximative analytical solutions, it can be and is used for
numerical work as well, since its results are closely related to eigenvalue and ei-
genvector derivatives, as we will see in Section 2.1.4. Here we collect general and
compact formulas which are not available in the EPR literature.

In perturbation theory, an eigensystem with unknown solution

(H − Eu)|u〉 = (H(0) + H(1) − Eu)|u〉 = 0 (2.11)

is solved in terms of an eigensystem

(H(0) − E(0)
u )|u(0)〉 = 0 (2.12)

with known solution. H(1) should be small compared to H(0). The eigenvectors
|u(0)〉 are normalised to unity. We expand eigenvalues and eigenvectors of the
unsolved system in a power series in λ

(

H(0) + λH(1) −
∞

∑
k=0

λkE(k)
u

)

∞

∑
k=0

λk|u(k)〉 = 0 (2.13)

with the important constraint 〈u(k)|u(0)〉 = 0. With λ = 0, the solution is known,
and going to λ = 1 gives the unsolved eigensystem. The solution is found by
the requirement that all coefficients to λk must vanish (since the above equation
must be valid for all λ).

The resulting expression for the energy corrections E(k)
u are staggeringly simple

Eu =
∞

∑
k=0

E(k)
u with E(k)

u = 〈u(0)|H(1)|u(k−1)〉 . (2.14)

Eigenvector corrections are slightly more complicated

|u〉 =
∞

∑
k=0
|u(k)〉 with |u(k)〉 = Pu

(

H(1)|u(k−1)〉 −
k−1

∑
l=1

E(l)
u |u(k−l)〉

)

(2.15)
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with the complementary projector

Pu = − ∑
v 6=u

|v(0)〉〈v(0)|
E(0)

v − E(0)
u

. (2.16)

The corrected eigenvector |u〉 has to be re-normalised.
The above formulas are only a special case of the general expressions obtained General PT

if H is also expanded into a powder series in λ

H =
∞

∑
k=0

λk H(k) (2.17)

and not truncated after the first order as in classical Rayleigh-Schrödinger theory.
The general solutions are

E(k)
u = 〈u(0)|

k

∑
l=1

H(l)|u(k−l)〉 (2.18)

|u(k)〉 = Pu

(

k−1

∑
l=1

(

H(l) − E(l)
u

)

|u(k−l)〉+ H(k)|u(0)〉
)

. (2.19)

A special form of perturbation theory is frequency-shift (or eigenfield) perturb-
ation theory. It is discussed in Section 2.2.1, since it is only applicable to cw EPR.

Numerically, Eq. (2.14) and Eq. (2.15) can be implemented very compactly in Matrix form
matrix form, so that the corrections for all eigenvalues and eigenvectors are com-
puted simultaneously. H(0) is diagonalised

V(0)† H(0)V(0) = E(0) , (2.20)

giving a unitary matrix V(0) with the eigenvectors along the rows and a diagonal
matrix E(0) with the eigenvalues on the diagonal. All operators (including H(1))
are then transformed to the eigenbasis of H(0). In this basis, H(0) = E(0), V(0) =
1N , and Pu is diagonal for each u. The diagonals of all Pu can then be collected as
rows into the projector matrix Q with elements

Q(v, u) = − δv,u

E0(v, v)− E0(u, u)
. (2.21)

The resulting matrix expressions1 for the perturbational corrections are

E(k) = diag
(

R(k−1)
)

with R(k) = H(1)V(k) (2.22)

V(k) = Q .∗
[

R(k−1) −
k−1

∑
l=1

V(k−l)E(l)

]

. (2.23)

These formulas are derived here for the first time.

1 diag(A) of matrix A is A with all off-diagonal elements set to zero. The operator .∗ indicates
element-wise multiplication.
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2.1.4 Derivatives

Derivatives of energy eigenvalues and eigenvectors with respect to the external
magnetic field and other spin Hamiltonian parameters are of prime importance
in spectral simulations. They are used for interpolation, resonance field compu-
tations, strain modelling and optimisation algorithms. Here we summarise the
most important formulas1.

The first derivative of a non-degenerate energy eigenvalue Eu with respect toFeynman’s
theorem a parameter p of the Hamiltonian is given by the Hellmann-Feynman theorem

[Fey39]
∂Eu

∂p
= 〈u| ∂H

∂p
|u〉 , (2.24)

where |u〉 is the associated eigenvector. Most important is the derivative with
respect to the external magnetic field

∂Eu

∂B
= 〈u| ∂H

∂B
|u〉 = 〈u|GzL|u〉 . (2.25)

Second derivatives were also derived [Mis76]. More generally, if ∂2H/∂p2 = 0,General
derivatives i.e. when p is a linear parameter of the spin Hamiltonian, which is commonly the

case, then the derivatives are proportional to the classical perturbational correc-
tions of Eq. (2.14) and Eq. (2.15) with H(1) = ∂H/∂p

∂kEu

∂pk =
k!

(p− p0)k−1 E(k)
u

∂k|u〉
∂pk =

k!
(p− p0)k−1 E(k)

u |u(k)〉 , (2.26)

where p0 is the value of the parameter p in the unperturbed Hamiltonian H(0).
If p is not a linear parameter of H, then the perturbational corrections of Eq.

(2.18) and H(k) = ∂k H/∂pk have to be used instead. All formulas are valid only
for non-degenerate eigenvalues. All energy derivatives are real, since Eu is real
and all parameters p of the spin Hamiltonian are real.

Another important quantity is the orientational gradient of a state energy. ForOrientational
gradient constant B0, Eu is defined on a sphere |B0| = const in B0 space. If the orientation

of the magnetic field is changed, Eu changes as well. This is equivalent to moving
on the sphere surface of Figure 2.2(a). Therefore, for a point on the sphere surface,
the orientational gradient of a state energy Eu in the laboratory frame can be
calculated

∇Eu =

(

〈u|GxL|u〉
〈u|GyL|u〉

)

(2.27)

with the external magnetic field along zL. ∇Eu is the projection of the gradient of
the 3D function Eu(B0) onto the tangent plane of the 2D sphere surface. An often

1 Many workers use difference quotient approximations to some of these derivatives and seem not
to be aware of the analytical formulas.
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needed quantity is the magnitude of this gradient for a transition frequency

|∇(Ev − Eu)| =
√

(〈v|GxL|v〉 − 〈u|GxL|u〉)2 + (〈v|GyL|v〉 − 〈u|GyL|u〉)2. (2.28)

The differences in this formula (and similar terms like the 1/g factor, see Eq.
(2.52)) can be computed in a quick and very handy way

〈v|A|v〉 − 〈u|A|u〉 = Re
[

(〈v|+ 〈u|)A(|v〉 − |u〉)
]

, (2.29)

saving two of the four vector-matrix multiplications.

2.2 cw EPR peaks

In this section, we first give an overview of existing methods for computing cw
EPR resonance fields, before introducing a new one. After that we describe the
computation of line intensities.

2.2.1 Resonance fields - known methods

For a spin system with magnetic field orientation Ω ≡ zL, resonance in the cw Eigenfields
EPR experiment occurs each time the magnetic field reaches a value such that the
energies of two states |u〉 and |v〉 in the spin system are separated exactly by a
quantum ν of the radiating microwave

[

F + BGzL(Ω)
]

|u〉 = Eu|u〉
[

F + BGzL(Ω)
]

|v〉 = (Eu + ν)|v〉 .
(2.30)

These fields B are called the resonance fields or eigenfields of the system. This is
equivalent to finding the roots of the implicit function ∆vu(B)− ν

∆vu(B)− ν = Ev(B)− Eu(B)− ν = 0 . (2.31)

The set of equations Eq. (2.30) is not directly solvable in state space, neither General
eigenproblemnumerically nor analytically. In Liouville space, however, the problem can be

formulated and solved in an explicit form [Bel73]. Then the eigenfields are the
eigenvalues B from the general eigenvalue problem1

(F⊗ 1N − 1N ⊗ F∗ − ν1N ⊗ 1N)Z = B(G∗zL ⊗ 1N − 1N ⊗ GzL)Z (2.32)

with Z = |u〉 ⊗ |v〉. If B is an eigenfield and Z its associated transition eigenvector,
the states |u〉 and |v〉 are at resonance.

1 The⊗ product is defined in Appendix A. Its definition and consequently the exact form of Eq. (2.32)
is different from that in [Bel73].

21



2 Peaks

Table 2.1: Published numerical methods for locating resonance fields for a given orienta-
tion.
Class Method References
Direct eigenfield [Bel73, Scu82]
Extrapolation classical PT [Kei87, Gri90]

frequency-shift PT [Bel74, Nil79, Wan96, Gri99]
Root finding Newton-Raphson [Swa64, vV78, Kre91, Gaf93, Mor99]

Muller’s method [Mac69, Net85]
Homotopy Newton-Raphson† [Gat98]

least-squares [Mis76]
Interpolation cubic splines [Gle91, Gaf98]

Chebyshev [Mab92]
† Uses Rayleigh inverse iteration instead of full diagonalisation.

For a pair of states there might exist more than one resonance field, so that
more than one line appears in the field-swept spectrum. This is in marked con-
trast to frequency-swept spectra, where only one resonance per state pair is pos-
sible. Transitions with multiple resonance fields are referred to as looping trans-
itions [Gaf98]. They can only occur if ν is not larger than the largest eigenvalue
difference at zero field [Bel73]

ν ≤ EN(0)− E1(0) . (2.33)

In the other case, only one resonance field per state pair is possible.
The properties of Eq. (2.32) have been studied in detail [Bel73]. A few possibil-Numerics

ities for speed-up of the numerical implementation have been hinted at [Čug94].
Still, the eigenfield method is very expensive. E.g. for an S = 1/2 system with
a 63Cu and four 14N nuclei coupled to the electron, there are 628 states. Since
none of the nuclei can be neglected, the eigenfield equation would have to deal
with matrices of dimension 6282 = 394384. Using double precision arithmetic
(16 bytes per complex number), a real matrix would need 2318 GB of memory.
Methods for handling sparse matrices can reduce this amount, but nevertheless
general eigenfield computations are feasible only for small systems or on very
powerful computers. Approximation methods that operate in the much smaller
state space are necessary and have been used extensively.

Such approximation methods are often based on perturbation theory. Analyt-Approxi-
mations ical perturbational methods were used to derive explicit formulas for resonance

fields for certain spin Hamiltonians (see [Tay75] for a collection of formulas). But
when two interactions in the spin Hamiltonian are of comparable magnitude,
these formulas are not valid anymore, and one has to resort to a completely nu-
merical treatment. Different published approaches are summarised in Table 2.1
and discussed in the following.

One class of methods uses extrapolation. If the resonance field B is sufficientlyTaylor series
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close to a starting guess B0, Eu and Ev can be expanded in a Taylor series around
B0

Eu(B) =
∞

∑
k=0

1
k!

(B− B0)
k ∂kEu(B0)

∂Bk (2.34)

and truncated after the first order. After inserting the derivatives from Eq. (2.26),
the resulting linear equation gives a first-order estimate of the resonance field

B = B0 +
ν− (E(0)

v − E(0)
u )

〈v(0)|GzL|v(0)〉 − 〈u(0)|GzL|u(0)〉
. (2.35)

Truncating Eq. (2.34) after the second order gives the quadratic equation

ν = (E(0)
v − E(0)

u ) + (E(1)
v − E(1)

u )(B− B0) + (E(2)
v − E(2)

u )(B− B0)
2 , (2.36)

which can also be used to compute B. The eigenvectors are then corrected by
inserting B into the similar equation

|u〉 = |u(0)〉+ (B− B0)|u(1)〉+ (B− B0)
2|u(2)〉 . (2.37)

(or the linear one).
A similar approach occasionally used [Nil79, Scu82] is frequency-shift perturb- Frequency-

shift PTation theory [Bel74], also called eigenfield perturbation theory [Wan96]. In con-
trast to classical perturbation theory, the eigenvectors and the spin Hamiltonian
are corrected to all orders, whereas the energy difference between two states is
only corrected to first order with

E(1)
vu = ν− (E(0)

v − E(0)
u ) . (2.38)

The resonance field is obtained as a sum over all orders of corrections to an initial
field guess B(0)

B = ∑
k

B(k) with B(1) =
E(1)

vu

〈v(0)|GzL|v(0)〉 − 〈u(0)|GzL|u(0)〉

B(k) =
k−1

∑
l=1

B(l) 〈v(0)|GzL|v(k−l)〉 − 〈u(0)|GzL|u(n−l)〉
〈v(0)|GzL|v(0)〉 − 〈u(0)|GzL|u(0)〉

.

(2.39)

The zeroth-order eigenpairs are obtained from a starting guess. Eigenvectors are
computed from Eq. (2.18). Note that the first-order correction is identical to the
one of Eq. (2.35).

For a given orientation Ω and transition |u〉 ↔ |v〉, Eq. (2.30) can also be solved Root finding
for B by applying standard root finding algorithms [Pre92] to Eq. (2.31). The
Newton-Raphson method has often been used, sometimes supplemented with
bisection, quadratic interpolation (Muller’s method [Mac69, Net85]) and other
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methods. In the Newton-Raphson method, a starting guess B0 is iteratively re-
fined using

Bn = Bn−1 −
Ev(Bn−1)− Eu(Bn−1)− ν

〈v|GzL|v〉 − 〈u|GzL|u〉
, (2.40)

until convergence is reached. In contrast to the perturbational approaches men-
tioned above, eigenvalues and eigenvectors are recomputed here in each iteration
step. This makes the method much more expensive, but also much more reliable.
Starting guesses do not have to be so close to the eigenfield as in the other ap-
proaches. The first step B0 → B1 in this approach is identical to the Taylor series
approach to first order (Eq. (2.35)).

All extrapolation and root-finding methods work reliably only on a narrowBracketing
field range, so that the experimental field range is usually divided into segments,
each being searched separately for resonance fields. By this segmentation, the
roots of Eq. (2.31) are bracketed. For non-looping transitions, the resonance field
for a given transition will lie only in one of the segments. Otherwise, any number
of resonance fields in any number of segments are basically possible. The number
of segments must be sufficiently high to be sure that there is no more than one
eigenfield per segment. When extrapolation methods are used, energy levels and
states have to be traced carefully across segments.

Resonance fields and eigenpairs of a spin Hamiltonian for a given orientationHomotopy
can be computed in two different ways. The simple one is to construct and diag-
onalise the Hamiltonian independently without using any results of prior diag-
onalisations. The other one is to use the known eigenpairs of a close and already
diagonalised spin Hamiltonian as starting points for computing the unknown
eigenpairs. This so-called homotopy method has been applied to trace eigen-
pairs both across orientation and magnetic field changes. Gates [Gat98] has used
Rayleigh inverse iteration combined with Newton-Raphson to find the resonance
fields, whereas Misra [Mis76] has employed Jacobi diagonalisation together with
an iterative least-squares minimisation of (∆vu(B) − ν)2. In both methods, the
resonance field of a close orientation is used as starting value for the root-search
iteration.

Homotopy is elegant and saves some time, but it is not very robust in the case
of anticrossings and bigger changes in B. Looping transitions are difficult to treat
[Gat98]. In contrast to all other methods, the computation of resonance fields for
different orientations is not independent in homotopy, so the method is not easily
parallelisable and needs more elaborate data handling.

Another method to find resonance fields for a given orientation is to diagonal-Level
diagram ise the spin Hamiltonian for a number of fields in the given experimental range

and to interpolate between them with cubic splines or Chebyshev polynomials
to model the full energy level diagram and to find the solutions to Eq. (2.31)
[Gle91, Gaf98, Mab92]. Still, the number and the values of the field at which the
Hamiltonian is diagonalised must be specified by hand. We will now present an
improved method that builds upon this modelling approach.
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Figure 2.4: (a) The adaptive segmentation iteratively subdivides the segment with the
largest error estimate until all segment errors are below threshold τB. In the last step,
segment centres and corners are combined. (b) Approximating an energy level by a
cubic spline with the error at the segment centre.

2.2.2 Resonance fields - new method

The methods of the previous section have problems. The eigenfield method is
too expensive. Extrapolation methods do not know whether their truncation is
accurate enough for the given starting field. Root finding methods are only loc-
ally convergent and might fail due to inappropriate starting guesses. Homotopy
methods can fail on anticrossings and looping transitions [Wan96].

The primary remedy is to divide the field search range into a number K of
small segments. Their centre fields serve as extrapolation points or as reasonable
starting values for root finding algorithms. However, it is the user who has to
inspect the final spectrum and decide whether a certain K is accurate enough or
not [Wan96]. But it is easy to devise a scheme that is completely robust and does
not need intervention by the user.

The method models the energy diagram using cubic polynomials (splines) as Principles
energy level approximations in each of a number of segments. Cubic modelling
has already been applied by others [Gle91, Gaf98] using a given number of seg-
ments. Here, we use an adaptive segmentation procedure. Starting from one ini-
tial segment with the border knots Bmin and Bmax, the modelling error for each
segment is estimated and the segment with the largest error is subdivided into
two segments by placing a new knot at the centre (or near it). This procedure is re-
peated until the largest segment error falls below a threshold (see Figure 2.4(a)).
As a result, the number of segments is just high enough to give a good spline
model and not higher. The knot density adapts to the local complexity of the
energy diagram.

For a given field, Eu and ∂Eu/∂B can be computed by diagonalising the spin Hermite
splineHamiltonian and applying Eq. (2.26). For a field segment with borders B1 and B2

it is then straightforward to compute the cubic Hermite interpolation polynomial
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for each energy level. In a convenient matrix notation it reads

Ẽu(B) = tTMcu =
(

t3 t2 t 1
)









2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

















Eu(B1)
Eu(B2)

∆B ∂Eu(B1)/∂B
∆B ∂Eu(B2)/∂B









(2.41)

with t = (B− B1)/∆B and ∆B = B2 − B1. Ẽu(B) passes through the two border
points with the two slopes supplied (Figure 2.4(b)).

Of course, this polynomial will deviate to some degree from the true Eu curveError estimate
between B1 and B2 (see Figure 2.4(b)). It is desirable to minimise the maximum
deviation of the interpolated energy levels from the true ones δE. The only viable
method to get hold of an estimate of this deviation is to check Ẽu at the segment
centre B3 = (B1 + B2)/2 (i.e. t = 1/2)

Ẽu(B3) =
1
2

[

Eu(B1) + Eu(B2)
]

+
∆B
8

[∂Eu(B1)

∂B
− ∂Eu(B2)

∂B

]

(2.42)

against the correct energies there and look for the largest deviation

δ̃E = max
u

∣

∣Eu(B3)− Ẽu(B3)
∣

∣ . (2.43)

It is the resonance field though which we are interested in, so it is more appropri-
ate to use

δ̃B = max
u

∣

∣

∣

∣

Eu(B3)− Ẽu(B3)

∂Eu(B3)/∂B

∣

∣

∣

∣

(2.44)

as the error measure. If the denominator is close to zero, δ̃B will be large, meaning
that flat regions are modelled more accurately.

In this procedure, the spin Hamiltonian at the segment centre is diagonalised
for estimating the error. If the segment is subdivided, the eigenpairs are already
computed. If not, they are not wasted, since they can be included in the final
segmentation (see Figure 2.4(a)).

If δ̃B falls below a certain threshold τB, the segment between B1 and B2 canThreshold
be assumed to be reasonably modelled by the cubic spline. If δ̃B > τB, then the
segment has to be divided at the centre field B3 into two segments, which are
then separately modelled and checked.

It is possible to automatically estimate a value for the threshold τB. The res-
onance fields have to be correct to within the step size of the field axis. Given
the field range Bmin to Bmax and the number nB of field points to simulate, the
accuracy of the field search procedure needed is

τB ≈
Bmax − Bmin

nB
. (2.45)

Extensive numerical tests have shown that the real maximum error of the dia-
gram is between 0.001 δ̃B and 5 δ̃B. It is larger than the estimate for very sharp and
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Figure 2.5: Adaptive segmentation for modelling the energy diagram of Tb4+ in ThO2 (see
[Abr86], p. 337, for spin Hamiltonian parameters) compared to equidistant segmenta-
tion with the same number of segments. (a) (φ, θ) = (45◦, 4◦), (b) (φ, θ) = (15◦, 27◦).
The total maximum deviation δE is given on the top right of each diagram.

hence very badly modelled anticrossings, occurring mainly for magnetic field ori-
entations near principal directions of an interaction tensor or matrix. However,
this maximal error from the diagram will translate into the EPR spectrum only
for certain spectrometer frequencies, that is, when the resonance fields are indeed
very close to the anticrossings. Usually the error for field positions is much smal-
ler.

We illustrate the method with a rather complex spin system. In Figure 2.5 the Adaptive vs.
uniformenergy level diagrams for two different orientations are shown. The sharper anti-

crossings are, the more segments the bisection procedure will automatically gen-
erate. The real error compared to a uniform segmentation with the same number
of segments is usually smaller. Whereas for equidistant segmentation K has to be
optimised manually, the adaptive method automatically increases K as much as
necessary. As can be seen in the figure, the adaptive K is orientation-dependent.
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The intersection with ν (here 95 GHz) gives the resonance fields.

The equidistant method uses one value for all orientations, leading to larger er-
rors along principal axis directions.

The Tb4+ system is quite unusual. For more commonplace situations, like cw
EPR of d transition metal ions between X band and W band, much fewer seg-
ments are needed. Any Cu2+ or VO2+ spectrum with ν ≥ 2 GHz can be sim-
ulated with 2 segments. Spectra of high-spin Fe3+ need between 2 segments if
D À ν and up to 40 segments if D ≈ ν.

Once the energy levels have been modelled in the field range of interest, in thePolynomial
roots second step the resonance fields at the spectrometer frequency ν can be located.

For a given transition |v〉 ↔ |u〉, the difference polynomials

Ẽv − Ẽu − ν = tT p− ν

p = (p3, p2, p1, p0)
T = M(cv − cu) .

(2.46)

of all segments are checked (see Figure 2.6). Their roots t0 give the resonance
fields B = B1 + t0(B2 − B1). If no looping transitions are possible, i.e. when ν is
bigger than EN − E1 at zero field [Bel73], at most one root will lie in the segment
and Newton-Raphson

t0 =
1
2

(or some other value)

tn+1 = tn −
p3t3 + p2t2 + p1t + p0 − ν

3p3t2 + 2p2t + p1

(2.47)

or Muller’s method can be used to locate it. If looping transitions are possible,
first compute ∆p = p2

2 − 3p3 p1. If ∆p ≤ 0, the polynomial is monotonic, has only
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one root and the above root-finding methods can be used. If ∆p > 0, up to 3 roots
are possible and can be obtained as the eigenvalues of the companion matrix





− p2
p3
− p1

p3
− p0−ν

p3
1 0 0
0 1 0



 . (2.48)

Very often p3 ¿ p0, p1, p2, and the cubic polynomial can be reduced to a quad-
ratic one.

With the resonance B found, the eigenvectors can be computed by linear or
cubic interpolation between the eigenvectors of the two adjacent knots. For cubic
interpolation, ∂|u〉/∂B has to be evaluated according to Eq. (2.26). In general,
linear interpolation is accurate enough.

The modelling method can also use the information about the spectrometer ν cut-off
frequency. Any segment with EN − E1 < ν at both borders will not contain any
resonance and can be neglected.

With this new adaptive bisection procedure, resonance field searches are auto-
tuning to the difficulty of the problem, specified by the spin system, its orienta-
tion, Bmin, Bmax, nB and ν. Accuracy is guaranteed and no additional user para-
meters are required.

2.2.3 Intensities

Although a full quantum mechanical re-examination of the field-modulated cw
EPR experiment has revealed that in reality the experiment is a multi-photon
single-quantum spectroscopy [Käl03], we stick to the established picture that
treats it as an absorption experiment, adding the field modulation as an electronic
effect that causes the “derivative” observed in experiment (see p. 60).

Once the eigenvectors and the resonance field of a particular transition are Fermi’s
Golden Rulefound, we can compute the transition intensity (absorption rate) due to the incid-

ent microwave radiation

H1(B1) = 2B1GxL cos(2πνt) = B1

(

ei2πνt + e−i2πνt
)

GxL (2.49)

(for perpendicular excitation). It is common to make the approximation |B1| ¿
|B0|, which holds in almost all cases. Time-dependent perturbation theory then
gives for the intensity

Avu =
2π
h̄

B2
1 |〈v|GxL|u〉|2 =

2π
h̄

B2
1 |tr (GxL|u〉〈v|) |2 (2.50)

(Fermi’s Golden Rule1). Experience shows that this formula is sufficient to ac-
count for all intensity variations in cw EPR spectra, when the additional 1/g

1 The formula is actually from Dirac’s original work on time-dependent perturbation theory
(1926,1927), but Fermi termed it Golden Rule in his 1949 course on nuclear physics at the University
of Chicago ([Fer50], p. 142). It is valid only for populations. Coherence effects are not included. In
addition, detection and excitation fields have to be parallel.
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factor [Aas75] is included.
This factor is due to the fact that in cw EPR the field and not the frequency is1/g factor

swept. In a two-dimensional spectrum (see Figure 2.7) the line width ΓB in a cross-
section along B (field sweep) is in a linear approximation proportional to the line
width Γν in a cross-section along ν (frequency sweep), if the line width Γ and
the first derivative of the transition frequency ∆(B) are approximately constant
within the spread of the resonance line

ΓB ≈ Γνγ . (2.51)

The factor is the inverse of the partial derivative of the energy separation with
respect to the field

γ =

[

∂(Ev − Eu)

∂B

]−1
=

1
〈v|GzL|v〉 − 〈u|GzL|u〉

. (2.52)

For high magnetic fields |v〉 and |u〉 are Electron Zeeman eigenstates, and γ is
proportional to 1/g.

Since the line widths of the two shapes in Figure 2.7 are different, but have theWidth and
intensity same amplitude, their integrals differ by a factor γ. Therefore, the 1/g factor has

to be included in the line width and in the line intensity, if normalized line shape
functions (as in Appendix B) are used. Close to coalescence points of looping
transitions the approximation in Eq. (2.51) is too coarse and the frequency-to-
field conversion leads to a distortion of the line shape due to the nonlinearity of
the transition energy ∆(B). In this case, cubic polynomials can be used to model
the line shape in field domain [Gaf98].

The intensity depends not only on the orientation of B0, but on B1 as well. ForIntegral
over χ a powder spectrum and a given B0 direction, the intensity of Eq. (2.50) has to

be integrated over all B1 orientations, i.e. the plane perpendicular to B0. This
is an integral over the third Euler angle χ and can be solved analytically in a
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straightforward manner1

∫

B1⊥B0

|〈v|BT
1 G|u〉|2 dB1 = B2

1

∫ 2π

0
|〈v|GxL cos χ + GyL sin χ)|u〉|2 dχ

= π B2
1

[

|〈v|GxL|u〉|2 + |〈v|GyL|u〉|2
]

. (2.53)

Consequently, the integrated intensity is proportional to the sum of the intensities
of two perpendicular B1 orientations. Eq. (2.53) cannot be simplified further.

If the temperature is such that it does not satisfy the high-temperature cri- Population
effectsterion2

∣

∣

∣

∣

h̄H
kBT

∣

∣

∣

∣

¿ 1 , (2.54)

a factor proportional to the Boltzmann population difference of the two states of
a transition has to be included, giving the total peak intensity

A = γAvu(βv − βu) with βv =
e
− h

kBT Ev

∑m e
− h

kBT Em
. (2.55)

2.3 Line widths

In practice, the one-Hamiltonian model giving a stick spectrum is not applicable
for a sample containing around 1010 spin systems. Resonance lines are broadened
by one or both of two different broadening mechanisms, homogeneous or in-
homogeneous.

2.3.1 Homogeneous broadening

Any resonance is associated with the generation of non-equilibrium populations Decay times
or coherences in the spin system. These excited states are not stable and decay
stochastically to the ground state by exchanging3 energy with the surroundings
(the so-called lattice). Due to Heisenberg’s uncertainty principle, this uncertain
lifetime implies an uncertainty in the state energies of the two levels involved,
i.e. the transition frequency is not exactly νp, but distributed around it. Hence
the resonance line will have a shape of finite width, usually a Lorentzian (see
Appendix B). If an excited state has a decay constant τ, the width of the associated
resonance line is 2/τ. Decay (relaxation) constants for populations are termed T1,
those for coherences T2. They depend on the presence of external radiation fields.

Homogeneous broadening is mostly negligible in solid-state EPR powder spec- Convolution

1 This was shown as early as 1964 [Was64, vV78], but even in 1987 [Kei87] numerical integration was
used.

2 As a norm, one can use the largest eigenvalue difference.
3 Spontaneous emissions are extremely improbable at EPR frequencies between 200 MHz and 1 THz.
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tra. If it is included it is usually assumed to be identical for all transitions. In this
case, the broadening is added to the stick spectrum by convolution (see Section
3.3) with a Lorentzian.

2.3.2 Inhomogeneous broadening

The assumption that all spin systems in a sample can be modelled by the same setEE terms
of spin Hamiltonian parameters is hardly ever applicable to solid-state powder
EPR spectra. There are three effects responsible. First, spin systems interact
through space, since they are not infinitely apart from each other. System A feels
the presence of system B via the EE term in the Hamiltonian. Since the neigh-
bouring spin systems are not identically placed for all systems, the interaction
parameter is distributed. All resonance lines in the spectrum broaden.

Second, hyperfine couplings in and around a single spin system are too smallHF terms
and too many to be resolvable. The total effect is a broadening of the spectral line
shape.

Third, even if more or less magnetically remote from other spin systems, aStrains
spin system might encounter slightly different molecular environments depend-
ing on structural strains acting on the molecule from the host lattice (solvent).
These strains induce distributions in the spin Hamiltonian parameters which are
usually modelled as symmetric Gaussian distributions (see Section 1.3).

If the distribution is small—as it usually is—, the broadening can be linearly ap-Linear
approximation proximated. The spread Γp of the transition frequency Ev − Eu due to parameter

p is proportional to the width σp of the parameter distribution

Γp(∆vu) = σp
∂∆vu

∂p
= σp

[

〈v| ∂H
∂p
|v〉 − 〈u| ∂H

∂p
|u〉
]

. (2.56)

To obtain the width of the resonance field distribution, the 1/g factor from Eq.
(2.52) has to be included

Γp(Bvu) =
Γp(∆vu)

∂∆vu/∂B
= σp

〈v|∂H/∂p|v〉 − 〈u|∂H/∂p|u〉
〈v|GzL|v〉 − 〈u|GzL|u〉

. (2.57)

If ∆vu(B) is not linear, this approximation breaks down and a numerical in-Limits
tegration has to be performed. Line shapes will be asymmetric in field domain,
if they are symmetric in frequency domain, as has been pointed out repeatedly
[Pil90, Poo99]. However, if the distribution in p is large, then the assumption of
a symmetric distribution in frequency domain is not valid either. If strains ori-
ginate from structural variations, the correlation of the distributions in different
spin Hamiltonian parameters has to be taken into account [Hag85b].

Most commonly, strain distributions of g and A principal values are used inStrains
simulations. For high-spin systems, distributions in D and E (see Eq. (1.16)) or
alternatively in D and E/D are used.

32



2.4 ENDOR peaks

2.4 ENDOR peaks

2.4.1 Resonance positions

From the computational point of view, the cw ENDOR experiment is the simplest
of all EPR experiments. At a constant static field B0 (along zL), two frequencies
are simultaneously applied to the sample, a microwave frequency ν with field
B1(t) along xL, exciting EPR transitions, and a radio frequency νrf with field B2(t)
along yL, inducing transitions between nuclear levels; νrf is swept. Resonances
occur when νrf hits the energy difference of two states

νrf = ∆vu = Ev − Eu . (2.58)

Hence, only one diagonalisation is necessary for the computation of all peak pos-
itions of an ENDOR spectrum for a given orientation of the paramagnetic centre.

2.4.2 Transition intensities

ENDOR transition intensities are more complicated than their cw EPR counter-
parts. The cw ENDOR experiment is a steady-state experiment, and the Liouville-
von Neumann equation (Eq. (2.65)) ought to be solved for that case. The ap-
proaches used are much simpler, though. Usually the effect of the balance of
relaxation rates is neglected. Instrumental effects arising from the properties of
the rf excitation circuit are neglected as well.

With these simplifications, the intensity of an ENDOR transition is propor- NMR
intensitytional to the matrix element of the radio-frequency excitation Hamiltonian H2 =

B2GxL describing the interaction with the excitation field B2

Mvu =
2π
h̄

B2
2 |〈v|GxL|u〉|2 . (2.59)

Note that GxL contains both the nuclear and the electron Zeeman interaction. Hyperfine
enhancementThe first describes the pure NMR transition rate, the latter is responsible for the

so-called hyperfine enhancement: Since the unpaired electron is also effected by
B2, its magnetic moment gives rise to an additional oscillating field acting on the
nucleus.

An ENDOR peak has only non-zero intensity when the microwave frequency EP
excitationν hits an EPR transition connected with one of the two nuclear states |u〉 and

|v〉. The ENDOR intensity is hence also proportional to the sum over all EPR
transition moments weighted by the excitation bandwidth Γmw of the microwave

αvu(Γmw) = ∑
q

[

f (∆qu − νmw, Γmw)〈q|GxL|u〉2 + f (∆qv − νmw, Γmw)〈q|GxL|v〉2
]

.

(2.60)
f indicates a Gaussian line shape. In numerical simulations, Eq. (2.60) was first
used in the program MAGRES [Kei87].
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In a powder sample, αvu can be strongly orientation dependent, if there areOrientation
selection large anisotropic interactions affecting EPR transitions. This is the source of

strong orientation selection in ENDOR spectra of many paramagnetic centres.
The resulting complications for numerical simulations are dealt with in Section
4.5.

The above formula is valid for stick EPR spectra. If inhomogeneous broaden-EPR
broadening ing is present, it effectively enlarges the excitation bandwidth. Instead of Γmw,

Γtot =
√

Γ2
mw + Γ2

inhom (2.61)

is used. The excitation range of the incident radio frequency is assumed to be
zero at this stage and is later added in the form of a Gaussian convolution of the
ENDOR spectrum.

In pulse ENDOR, line intensities depend on experimental settings. The MimsPulse ENDOR
ENDOR experiment is hyperfine selective, since the signal from a nucleus de-
pends on the time τ between the first two pulses in the sequence, adding an
additional factor [Sch01]

F =
1
4
[1− cos(aisoτ)] . (2.62)

This causes blind spots in the ENDOR spectrum. In the Davies ENDOR exper-
iment signals due to nuclei with small hyperfine couplings are suppressed de-
pending on the length t1 of the first pulse

F =

√
2 ηS

η2
S + 1/2

with ηS =
aisot1

2π
. (2.63)

In experiments the pulse sequences usually are set up to give approximately con-
stant F for the ENDOR spectral region of interest, so that Eq. (2.62) and Eq. (2.63)
can be neglected.

If necessary, temperature effects are included according to Eq. (2.55), so thatTotal
the overall intensity is

Avu = (βv − βu)Fαvu Mvu . (2.64)

2.5 Pulse EPR peaks

In this and the next subsection, the computation of pulse EPR peak positions and
amplitudes is discussed. This section is concerned with the basic theory, whereas
the next one discusses topics relevant for an implementation.

Pulse EPR simulations are substantially more complicated than simulations ofCurrent
state cw EPR or ENDOR spectra. Many computations are based on the original for-

mulas derived by Mims and others [Sch01]. Their applicability is limited to spe-
cial experiments (two-pulse and three-pulse ESEEM, HYSCORE) and to special
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systems (isotropic g, S = 1/2). Recently there have been efforts to improve per-
formance [Sha98, Szo98] and to extend their scope [Mád02]. But pure numerical
pulse EPR simulations are still too limited and too slow to be routinely usable
for fitting experimental spectra. All ESEEM simulations are currently limited to
spin systems with S = 1/2, although work on S ≥ 1 computations is under way
[Nob02a] and the underlying theory is being worked out [Ast02, Ben02].

Most pulse EPR and NMR simulations in general have been performed in time TD vs. FD
domain so far [Hoh99, Nic00]. Frequency domain methods have the potential
of being much faster [Szo98, Bak00], but general formulas for arbitrary pulse se-
quences have not been derived. In the following we introduce a very general
and efficient frequency-domain technique, yielding pulse EPR peak positions
and amplitudes.

2.5.1 Basic theory

Any pulse EPR spectrum computation method starts from the basic quantum Master
equationdynamics (Liouville-von Neumann) equation1

σ̇(t) = −i[H(t), σ(t)] (2.65)

and its solution

σ(t) = U(t, t0)σ(t0)U†(t, t0) with iU̇(t, t0) = H(t)U(t, t0) (2.66)

with the spin density operator σ(t) and a possibly time-dependent spin Hamilton
operator H(t). If the Hamiltonian H is time-independent, the equation can be
integrated easily with

U(t, t0) = e−iH(t−t0) . (2.67)

σ(t0) in Eq. (2.66) denotes the density operator at the beginning of the experi- Boltzmann
distributionment. There the spin system is usually in thermal equilibrium σ(t0) = σeq, and

the density operator is given by the Boltzmann distribution

σeq =
exp(−h̄H/kBT)

tr[exp(−h̄H/kBT)]
(2.68)

with temperature T, the Boltzmann constant kB and the static Hamiltonian H.
There are no coherences at thermal equilibrium, i.e. the phases of different spins
are uncorrelated. The trace expression in Eq. (2.68) is slightly larger than the state
space dimension N.

Assuming |h̄H/kBT| ¿ 1 and using the polynomial expansion exp(X) = Linear term

∑
∞
k=0 Xk/k! we can approximate σeq by

σeq ≈
1N − h̄H/kBT

tr(1N − h̄H/kBT)
, (2.69)

1 In this and the following section we will use H in angular units, see p. 5.
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since higher-order terms in X are too small to contribute significantly. This is the
so-called high-temperature approximation.

The trace expression in the denominator of Eq. (2.69) is N, since tr(H) = 0 forPolarisation
only the usual spin Hamiltonians in EPR. The constant in the enumerator is irrelevant

to any EPR experiment. So we need only the linear part

σ
pol
eq ≈ −

1
N

h̄H
kBT

. (2.70)

The error of this approximation increases with higher field, lower temperature
and higher spins.

There are some cases for which σ(t0) 6= σeq. If the repetition rate of the ex-Exceptions
periment is very high, some coherences or polarisations might not have decayed
after the end of the previous pulse sequence, and the density operator might not
have reached thermal equilibrium. For example, these effects have to taken into
account when simulating pulse ENDOR spectra at high fields and low temper-
atures (e.g. W band at T ≤ 5 K), where non-equilibrium polarizations on nuc-
lear transitions can invert spectral lines [Epe01]. Other situations include spin-
correlated radical pairs and excited triplet states.

A pulse EPR experiment consists of a sequence of mw or rf pulses separatedPulse
sequence by free evolution periods. After the last pulse and an additional time delay there

appears an echo (see Figure 2.8). Its amplitude is a function of the position, the
length, the power and the phase of the pulses. Several pulse or interpulse delays
are usually incremented or decremented in a pulse EPR experiment. The echo
amplitude as a function of these delay times then constitutes the pulse EPR sig-
nal.

The free evolution periods are described by the propagatorPropagators

Ufree = exp(−iHfreet) , (2.71)

with the mw-free static spin Hamiltonian Hfree. The pulse propagators are

Upulse = exp(−i(Hfree + Hmw)t) . (2.72)

with the additional mw excitation Hamiltonian Hmw in an appropriate frame that
removes the time dependence of Hmw in the laboratory frame (see next section).
If the time-dependence cannot be removed, Upulse has to be calculated by numer-
ical integration as detailed in Section 2.6.3.

If all propagators representing pulses and interpulse delays which remain con-Block
propagators stant during the experiment are collected into pulse blocks represented by single

propagators P [Sha98], a pulse sequence can be generally described by the total
propagator

Q(t) = P(M+1)
1

∏
k=M

exp(−iH(k)tk)P(k) , (2.73)
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evoluting the density operator according to

σ(t) = Q(t)σ(t0)Q†(t) . (2.74)

The vector t = (t1, . . . , tM)T collects all evolution time variables. The start and
end indices for the sum indicate a time-ordered product, which is essential, since
propagators for different periods usually do not commute.

In most pulse EPR experiments the variable evolution periods are governed by Incremen-
tationthe mw-free static Hamiltonian, but sometimes pulse durations are incremented

as well, as in decoupling and nutation experiments [Sch01]. The way in which t
is varied in an experiment is determined by its incrementation scheme. Either all
M components of t are changed independently, or some of them are related. For
a given pulse sequence, different incrementation schemes yield different spectra
[Hub96]. Hence, the pulse sequence and the incrementation scheme are two quite
separate characteristics of a pulse EPR experiment [Pon97].

The density operator fully describes the state of the ensemble of spin systems Observables
at any time, and at the end of the pulse sequence the expectation value of an
observable D (usually the magnetisation along xL) can be obtained from

s(t) = 〈D〉(t) = tr [σ(t)D] = tr
[

Q(t)σ(t0)Q†(t)D
]

. (2.75)

2.5.2 FD formulas

Starting from the basic equations above we can now derive general formulas for Propagator
eigenbasespulse EPR peaks. In Eq. (2.73) all variable evolution period operators are trans-

formed to their respective eigenbases by replacing the propagator exponentials
by their diagonal decompositions

exp(−iH(k)tk) = R(k) exp(−iε(k)tk)R(k)† , (2.76)
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where ε is the Hamiltonian H in its diagonal representation, still in angular fre-
quency units. The unitary transformation matrices R are joint with the adjacent
pulse block matrices in Eq. (2.73) so that P̃(k) = R(k)†P(k)R(k−1) (for 2 ≤ k ≤ M),
P̃(1) = R(1)P(1) and P̃(M+1) = P(M+1)R(M)†, giving

Q(t) = P(M+1)
1

∏
k=M

R(k) exp(−iε(k)tk)R(k)†P(k)

= P̃(M+1)
1

∏
k=M

exp(−iε(k)tk)P̃(k) . (2.77)

(see illustrative examples in Figure 2.8). This full propagator eigenbasis repres-
entation has the advantage that all variable propagator exponentials are diagonal.
The number of scalar multiplications needed to compute Q for any given t is thus
minimised in this representation.

Inserting the new expression for Q(t) into Eq. (2.75) and going to a matrixScalar level
representation, the equation reads on a scalar level

s(t) = ∑
ξ

[

Zξ

M

∏
k=1

exp
(

iω(k)
ξ tk

)

]

(2.78)

with the complex amplitudes

Zξ = ∆ jM iM

(

1

∏
k=M−1

T(k)
ik ik−1

)

Σi1 j1

(

M−1

∏
k=1

T(k)†
jk−1 jk

)

(2.79)

and the abbreviated matrices

Σ = P̃(1)σ(t0)P̃(1)† ∆ = P̃(M+1)†DP̃(M+1) T(k) = P̃(k+1) . (2.80)

Σ is the density matrix at the start of the first incrementation period, ∆ denotes
the detection operator back-evoluted to the end of the last incrementation period
M, and T(k) is the propagator between periods k and k + 1. T(k) transfers and
mixes coherence and polarisation amplitudes between the evolution periods k
and k + 1. ξ is an index for the magnetisation transfer pathway specified by
(i1, j1; . . . ; iM, jM), and the angular frequencies ω are differences of propagator
Hamiltonian eigenvalues

ω
(k)
ξ = 2πν

(k)
ξ = ε

(k)
jk jk
− ε

(k)
ikik

. (2.81)

Using the vector ωξ = (ω
(1)
ξ , . . . , ω

(M)
ξ )T, Eq. (2.78) can be compactly writtenFourier

transform as a sum of exponentials

s(t) = ∑
ξ

Zξ exp
(

iωT
ξ t
)

. (2.82)
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Table 2.2: Amplitude expressions for pulse EPR pulse sequences

Periods Amplitudea Zξ

1 Σ∆

2 Σ∆T(1)T(1)†

3 Σ∆T(1)T(1)†T(2)T(2)†

4 Σ∆T(1)T(1)†T(2)T(2)†T(3)T(3)†

m Σ∆ ∏
m−1
k=1 T(k)T(k)†

a Indices have been omitted and are understood to be as in Eq. (2.79).

The M-dimensional Fourier transform of this signal is

FT [s(t)] = S(ω) = ∑
ξ

Zξδ
(

ω−ωξ

)

. (2.83)

Eq. (2.83) describes a collection of peaks with positions ωξ and amplitudes Zξ .
Whereas in conventional TD methods Eq. (2.74) and Eq. (2.75) are evaluated FD approach

for each t separately, the essence of the FD approach is the direct calculation of
the Fourier transform of s(t) in the form of a list of spectral peak positions ωξ

and amplitudes Zξ using Eq. (2.79) and Eq. (2.81). Explicit expressions for Zξ

are listed in Table 2.2. For an M-dimensional experiment, the peak amplitude
consists of a product of 2M complex numbers.

The evaluation of Eq. (2.79) and Eq. (2.81) can be performed by a recursive Recursive
computationfunction, which starts with a certain element Z(1) = Σi1 j1 and adds the first trans-

fer amplitudes T(1) to give Z(2) = T(1)
i2i1

Z(1)T(1)†
i2i1

. Then it calls itself recursively

with Z(2) instead of Z(1) and so on, until ∆ is reached and the final amplitude can
be computed. For a given Z(k−1), the routine loops over all new indices ik and
jk in Z(k). The peak positions are built up in the same way using the position
components ω

(k)
ik jk

. The recursive nature of the computation results in much fewer
multiplications compared to the separate evaluation of Zξ and ωξ for all ξ. In
addition, an elegant thresholding scheme can be implemented, as will be shown
in Section 2.8.2.

In a pseudocode notation the main loop calls the function ComputePeak for Functions
each element of the starting density matrix Sigma0

for i = 1 to N // loop over rows
for j = 1 to N // loop over columns

ComputePeak(0,Sigma0(i,j),0,i,j)
end

end

The recursive function is as follows
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function ComputePeak(omega,Z,k,i0,j0)
omega += epsilon(k)(j0,j0) - epsilon(k)(i_0,i_0)
if k == M-1 // final Z can be computed
Zfinal = Delta(j_0,i_0)*Z
AddToList(omega,Zfinal)

else // advance one period and call ComputePeak
for i = 1 to N // left index

for j = 1 to N // right index
Znew = T(k)(i,i0)*Z*conj(T(k)(j,j0))
ComputePeak(omega,Znew,k+1,i,j)

end
end

end

For experiments with one (two) variable evolution period(s), the recursive ap-
proach needs 1 (3) multiplication(s) per peak, just as the separate computation of
all peaks. For three variable evolution periods, it needs 3 + 2/N2 instead of 5 mul-
tiplications per peak, thus saving between 37.5% and 40%. The major advantage
of the recursive approach, however, is the possibility of adaptive thresholding,
which is discussed in Section 2.8.2.

If the detection operator D is Hermitian, an additional symmetry in Eq. (2.78)Hermitian
detector can further simplify the computational task. The signal s(t) will be real in this

case, and there will be pairs of peaks with positions ωξ1 = −ωξ2 with transfer
pathways ξ1 and ξ2 having complex conjugate amplitudes Zξ1 = Z∗ξ2

. For these
two peaks only one amplitude has to be explicitly calculated. This reduces the
number of amplitudes to compute by another factor of two.

2.5.3 Properties

The quite general formulas above clearly illustrate some properties of pulse EPR
spectra. The peak amplitudes in Eq. (2.79) contain generation, transfer and detec-
tion efficiencies. If different H(k) govern the various variable evolution periods
k, the transfer amplitudes contain the basis transforms, too. For a given set of
variable evolution times, that is, for a given Q(t), the expression for the peak
amplitudes does not depend on the incrementation scheme. The number of dif-
ferent matrix elements entering a peak’s amplitude expression increases with the
number of incremented evolution times. So the amplitude expression for a two-
pulse ESEEM signal is as complicated as that for a HYSCORE signal, because
they contain the same number of variable propagators.

Quite often different tk are interdependent in a pulse EPR experiment, e.g.t constraints
t1 = t2 in two-pulse ESEEM, so that one final spectral dimension results from the
simultaneous evolution of more than one propagator. The dimension of the spec-
trum d is then lower than the number of variable propagators M. In such cases,
there appear combination frequencies. The two-pulse ESEEM experiment is the
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2.5 Pulse EPR peaks

Table 2.3: Pulse EPR incrementation schemes and peak positions

Type d N t constraints Peak position ωξ Phase
(1a) 1 1 — ω

(1)
ξ 1

(1b) 2 t2 = t1 ω
(1)
ξ + ω

(2)
ξ 1

(1c) 2 t2 = T − t1 ω
(1)
ξ −ω

(2)
ξ eiω(2)

ξ T

(2a) 2 2 — (ω
(1)
ξ , ω

(2)
ξ ) 1

(2b) 3 t3 = t1 (ω
(1)
ξ + ω

(3)
ξ , ω

(2)
ξ ) 1

(2c) 3 t3 = t2 (ω
(1)
ξ , ω

(2)
ξ + ω

(3)
ξ ) 1

(2d) 4 (t4, t3) = (t1, t2) (ω
(1)
ξ + ω

(4)
ξ , ω

(2)
ξ + ω

(3)
ξ ) 1

(2e) 4 (t4, t2) = (t3, t1) (ω
(1)
ξ + ω

(2)
ξ , ω

(3)
ξ + ω

(4)
ξ ) 1

most prominent one. If the sum of two components of t is kept constant, the peak
amplitude expressions acquire an additional phase factor, like in PEANUT. The
most common incrementation schemes are summarised in Table 2.3. For a given
M the peak positions depend on d and on the constraints, whereas the amplitude
expressions are independent of d (Table 2.2). All common pulse EPR experiments
fall into a handful of sequence and incrementation scheme categories as listed in
Table 2.4.

As a concrete case, we examine the expressions for cross peaks in HYSCORE Cross peaks
spectra. These cross peaks occur in pairs with positions

ωa = (εj1 j1 − εi1i1 , εj2 j2 − εi2i2)
T ωb = (εj2 j2 − εi2i2 , εj1 j1 − εi1i1)

T (2.84)

and amplitudes

Za = ∆ j2i2 Ti2i1 Σi1 j1 T†
j1 j2 Zb = ∆ j1i1 Ti1i2 Σi2 j2 T†

j2 j1 . (2.85)

This shows that the amplitudes are physically different even when relaxation is
neglected. The resulting symmetry is significant in some experimental situations,
but is still not fully understood.

Peak positions and amplitudes can be interpolated over any experimental para- Interpolation
meter. This is discussed in Section 2.7.

The formulas given above are also applicable for pulse ENDOR experiments. Pulse
ENDORThe amplitudes of a Davies ENDOR experiment are equal to the coherence trans-

fer amplitudes of an inversion recovery experiment for a certain t as a function
of the frequency of the additional rf pulse. Mims ENDOR signals are obtained
along the same lines from three-pulse coherence transfer amplitudes.

In most situations, the pulse EPR experiment is performed with a set of pulse Phase cycles
sequences differing in the relative phases between pulses, but having the same
pulse and interpulse delay times. The resulting signals have peaks at the same
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Table 2.4: Classification of common pulse EPR experiments

Type a Experiments
(1a) 3-pulse ESEEM, inversion recovery
(1b) 2-pulse ESEEM, 1D CP
(1c) PEANUT
(2a) HYSCORE, DONUT-HYSCORE
(2b) 2D 3-pulse ESEEM
(2d) 2D CP
(2e) SIFTER

a see Table 2.3.

positions, but with different amplitudes. By linearly combining the signals, un-
wanted components such as echo crossings can be removed from the signal. In
the FD approach presented here, this linear combination can be performed at the
level of Zξ . The signals s(t) for the different cycles do not have to be constructed
separately.

2.5.4 Inhomogeneities

The shape and the amplitude of an electron spin echo strongly depends on theInhomo-
geneities spectrum within the excitation window of the first pulse in the sequence. In

solid state EPR, small or unresolved hyperfine couplings and distributions in
some spin Hamiltonian parameters are always present, so that the spectral line
shape within the excitation range of the first pulse is more or less constant. In
this case the echo has the form of a Gaussian with amplitudes modulated due to
refocussed nuclear coherence transfer echoes.

In order to accurately simulate an echo signal, these distributions have to beIntegration
integrated. Commonly an additional “offset” term

Hinhom = ωinhomSzL (2.86)

is added to the spin Hamiltonian, and the signal is integrated over a Gaussian dis-
tribution of ωinhom centred at ωinhom = 0. For the computation of single-crystal
pulse EPR signals this is essential. For powder signals it can be skipped, since
the orientational distribution already serves the purpose. However, care must
be taken to use the number of orientations sufficiently high to achieve proper
amplitude integration.

In some cases like the three-pulse ESEEM experiment, pulses on the centre ofOffset
the single-orientation EPR spectrum do not give an echo [Sch01]. Consequently,
an offset integration has to be performed even for powder samples.
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Figure 2.9: Position of the two-pulse echo
maximum in dependence of the length
of the first pulse. Parameters: τ =
300 ns, ΓFWHH = 10 MHz, pulse angles
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2.5.5 Detection window

The echo position depends on the length of the first excitation pulse in the se- Echo position
quence. As an example, we consider the two-pulse echo experiment. In the nar-
row line limit, i.e. when the EPR line width is much smaller than the excitation
range of the pulses, the echo maximum occurs at time τ after the last pulse. If
the line width is similar or larger than the pulse excitation width, then the echo
maximum is delayed in time by around 0.6tp as illustrated in Figure 2.9. This was
first noticed in one of the early papers on ESEEM [Mim65], where the approxim-
ate value of 1

2 tp was given. If the static Hamiltonian is neglected during the pulse
periods, the echo will always peak exactly at time τ after the end for the second
pulse.

In simulations, the correct position has to be determined either from the exper- Simulations
imental settings, by simulating the time trace of the magnetisation or by using
pre-computed numerical data like in Figure 2.9. Up to now, this effect has not
been taken into account [Szo98, Mád02] and a single-point detection at time τ
after the end of the last pulse was used, resulting in simulated spectra which
behave unexpectedly except in the simplest of all cases.

In experiments, the detection window covers a significant part of the echo Detection
windowshape. It is centred at the echo maximum and its width is adjusted so as to max-

imise the S/N ratio without loss of resolution in the modulation amplitude of the
signal. Sometimes an off-centre setting can enhance the resolution, since nuclear
coherence transfer echoes do no necessarily occur at the echo maximum.

2.6 Computing propagators

The method presented in the previous section is independent of the method the
different propagators are arrived at. In this section we discuss some techniques
to compute propagators.

For small hyperfine interactions and not too anisotropic S = 1/2 systems, the
rotating frame approach is the best choice (Section 2.6.1), since it effectively re-
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moves the time-dependence of the pulse Hamiltonian. On the other hand, for
electron spins S ≥ 1 a treatment in the laboratory frame is mandatory (Section
2.6.2). In this frame, the computation of the propagators is more complicated,
since the pulse Hamiltonians are time dependent. We will address this problem
in Section 2.6.3.

In the laboratory frame, the frequency-domain approach outlined in Section
2.5 can only be applied if the increments in the pulse sequence are multiples of
the detection frequency. Otherwise the phase of propagators and of the signal
change with each increment.

2.6.1 The rotating frame and its limits

Most experiments can be described without gross errors in the rotating frame
[Sch01]. This is valid for S = 1/2, isotropic g and A small compared to the elec-
tron Zeeman interaction. In this case the electron spin is almost entirely governed
by Zeeman interaction, and the off-diagonal hyperfine coupling terms are very
small. Then one can go to the eigenbasis of the electron, neglect these small terms
and get rid of the time dependence of the excitation operator [Sch01].

The rotating frame is a special case of an interaction frame. In general, oneGeneral trans-
formation applies a time-dependent unitary transformation U(t) = exp(iHTrt) based on

some Hamiltonian HTr to the Liouville-von Neumann equation

U†σ̇U = −iU†[H, σ]U = −i[U†HU, U†σU] = −i[HR, σR] (2.87)

with the transformed operators σR = U†σU and HR = U†HU. The resulting
transformed equation looks similar to the original one, but contains a different
effective Hamiltonian

σ̇R = −i[Heff
R , σR] with Heff

R = U† HU − iU†U̇ . (2.88)

Expectation values are independent of the frame used for the representation of
the operators

〈D〉 = tr(σD) = tr(U†σUU†DU) = tr(σRDR) . (2.89)

For the rotating frame transformation, U(t) = exp(i2πνmwSzLt), with the spectro-
meter frequency νmw. The detector is Mx, the magnetisation along the x axis of
the rotating frame. For quadrature detection My has to be computed as well. The
effect of phase-sensitive detection is already taken into account.

In the case of a significant zero-field splitting or hyperfine interactions (which
cause a zero-field splitting as well), the transformation to the rotating frame gives
significant time-dependent terms, which cannot be neglected.

If the rotating frame approach is applicable, it removes the time dependenceIdeal pulses
from the pulse Hamiltonians. Another simplifying concept makes used of “ideal
pulses” where the static Hamiltonian is neglected during pulses. In NMR pulses

44



2.6 Computing propagators

are often short compared to the largest interaction in the spin Hamiltonian, hence
this can be a good approximation. In EPR, however, the applicability of this
simplification is more restricted. Technically achievable pulse strengths (around
5 ns for a π/2 pulse on an S = 1/2 system with g = 2) are not orders of magnitude
larger than hyperfine interactions, so that the ideal pulse approximation is only
viable for the strongest pulses. As soon as softer ones are used (e.g. 50 ns for a
π/2 pulse), as required in many pulse EPR experiments, the static Hamiltonian
has significant influence.

If the ideal pulse approximation can be applied, it simplifies the computation Factoring
of the matrix exponentials for the pulse propagators, especially for a electron-
nuclear system with many nuclei. In this case the ideal pulse Hamiltonian con-
tains only the mw excitation part

H1 = 2πν1Sx ⊗ 1n (2.90)

with the pulse strength ν1, an operator Sx acting only in the electron subspace
and the identity operator 1n in the full nuclear product space

1n = 12I1+1 ⊗ 12I2+1 ⊗ · · · . (2.91)

It is easy to show1 that the pulse propagator with the Hamiltonian HP can be
factored

e−icS⊗1n = e−icS ⊗ 1n (2.92)

independent of the basis in which the operators are represented.
The use of ideal pulses tremendously speeds up the computation of pulse Limits

propagator exponentials. There is, however, a major drawback. The most in-
teresting peaks in many-nuclei systems where the factoring is particularly useful
are combination peaks between frequencies of the same and of different nuclei.
Unfortunately, the amplitudes of exactly these combination peaks are not well
approximated by the ideal pulse approach. A full treatment with the inclusion of
the static Hamiltonian during the pulses is mandatory.

2.6.2 The laboratory frame

If the time dependencies in the rotating frame cannot be neglected, the simulation
has to be performed in the laboratory frame. It has been suggested to use an
interaction frame [Oli96], but this does not reduce the computational cost. In
the laboratory frame the pulse propagators are time dependent and have to be
integrated numerically. This is discussed in Section 2.6.3.

The form of the detection operator in the laboratory frame deserves some at- Detection
tention. A spectrometer picks up the signal induced in a coil by the x component

1 With 1
k = 1 the proof is as follows: eA⊗1 = ∑k

1
k! Ak ⊗ 1

k =
(

∑k
1
k! Ak

)

⊗ 1 = eA ⊗ 1 ¤
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of the precessing magnetisation, so in the laboratory frame it is proportional to
d〈Mx〉/dt.

smw(t) =
d〈Mx〉

dt
=

d
dt

tr [Mxσ(t)] . (2.93)

In the detector this microwave signal is mixed with the reference signal at fre-
quency ωr, yielding

s(t) = 2 cos(ωrt + φr)smw(t) . (2.94)

For quadrature detection, the original signal smw(t) is split and mixed separately
with the reference signal at orthogonal phases. The signal s(t) in the rf range goes
through a low-pass filter (usually around 50 MHz) before it is digitised.

Now we want to compute explicitly s(t) at the detection time, assuming thatDetection
operator around this time the governing Hamiltonian is time-independent. For conveni-

ence we set the origin of the time scale to the detection time, i.e. t = 0 at detection
time. The entire pulse sequence is thus in the region t < 0. Using the Liouville-
von Neumann equation, we get

smw(t, τ) =
d
dt

tr [Mxσ(t, τ)] = tr [Mxσ̇(t, τ)] = tr [iMxσ(t, τ)H − iMxHσ(t, τ)]

= tr [iHMxσ(t, τ)− iMxHσ(t, τ)] = tr {i[H, Mx]σ(t, τ)}
= tr[Dσ(t, τ)] . (2.95)

In other words, the derivative in Eq. (2.93) implies that the detection operator is
not Mx, but rather the commutator i[H, Mx], which is Hermitian if Mx and H are
Hermitian1

smw(t, τ) = tr [Dσ(t, τ)] with D = i[H, Mx] . (2.96)

If Mx, σ and H are expressed in the eigenbasis of H, the above equation is
particularly simple on a scalar level. H itself is diagonal and the elements of the
detection operator are then

Dkl = i(Mx)kl(Hkk − Hll) = i(Mx)klωkl . (2.97)

2.6.3 Integrating propagators

In this subsection we explain how the propagator for a system under influence of
a periodic Hamiltonian can be computed numerically. We start with the periodic
Hamiltonian

H(t) = ∑
k

Hk eikωt (2.98)

with period T = 2π/ω. Under the influence of this Hamiltonian an initial state
σ(t0) evolves to

σ(t) = U(t, t0)σ(t0)U†(t, t0) , (2.99)

1 Proof: DT = (i[H, Mx])
T = i[MT

x , HT] = i[M∗x , H∗ ] = −i[H∗, M∗x ] = (i[H, Mx])
∗ = D∗ ¤
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Figure 2.10: Integrating the propagator under a time-dependent Hamiltonian.

where the propagator satisfies (see Eq. (2.66))

iU̇(t, t0) = H(t)U(t, t0) . (2.100)

This implies U(t0, t0) = 1N . The propagator can be decomposed into two propag-
ators

U(t, t0) = U(t, 0)U†(t0, 0) = X(t)X†(t0) , (2.101)

which corresponds to a backward evolution from t0 to time 0 and a forward evol-
ution to t.

According to the Floquet theorem (see e.g. [Cha98] and references therein), Floquet
theoremX(t) can be written as

X(t) = P(t)e−iHt , (2.102)

where P(t) is unitary (P(t)−1 = P(t)†) and periodic (P(t) = P(t + T)) and H is
the average Hamiltonian, which is time-independent. For a general propagator
this means

U(t, t0) = P(t)e−iH(t−t0)P†(t0) = F(t)e−iε̄(t−t0)F†(t0) (2.103)

where we transformed H to its eigenbasis without affecting U. ε̄ is the diagonal
representation of the average Hamiltonian.

F(t) defines a general time-dependent interaction frame where the time de- Interaction
framependent periodic Hamiltonian H(t) is reduced to the time-independent diagonal

average Hamiltonian ε̄. One enters this frame at time t0, evolves under the time-
independent Hamiltonian ε̄, and then goes back to the initial frame at time t. In
other words, the time dependence of the Hamiltonian is transferred to the frame.

We now show how to numerically compute U(t1, t0) using the equations given Period
bordersabove. For an efficient numerical computation of the propagator, we decompose

it into three parts

U(t1, t0) = U(t1, T1)U(T1, T0)U†(t0, T0) , (2.104)

where T1 and T0 defined as Tk = Tbtk/Tc = pkT are the period borders before t1
and t0, respectively. They are multiples of T. Now

U(tk, Tk) = F(tk)e−iε̄(tk−Tk)F†(T1) = F(τk)e−iε̄τk F†(0) = X(τk) , (2.105)
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where τk = tk − Tk is always smaller than T. The central propagator in Eq. (2.104)
becomes

U(T1, T0) = F(p1T)e−iε̄(p1−p0)T F†(p0T) = F(0)e−iε̄pT F†(0) = Xp(T) (2.106)

with the number of periods p = p1 − p0. Altogether, we now have

U(t1, t0) = X(τ1)Xp(T)X†(τ0) . (2.107)

This is illustrated in Figure 2.10(a).
Next, a set of X(t) with 0 ≤ t ≤ T is computed by dividing one period T intoSegmentation

small segments separated by t j = jT/n (0 ≤ j ≤ n). The segments are ∆t = T/n
wide. Over each segment 1 ≤ j ≤ n, the Hamiltonian H(t) is assumed to be time-
independent and is approximated by Hj = H(tj − ∆t/2). The iteration equation
for the propagator is then

X(tj) = e−iHj∆tX(tj−1) (2.108)

with X(0) = 1N (see Figure 2.10(b)). In this way, one obtains all three propagators
needed for computing U(t1, t0).

If all the X(tj) are stored, they can be re-used in Eq. (2.107) when multiple
propagators under the same Hamiltonian have to be computed.

2.7 Interpolative refinement

In all types of experiments discussed so far peak positions y, amplitudes I andSmoothness
line widths Γ are generally continuous smooth functions of all spin Hamiltonian
parameters. This means that peak data for the spin Hamiltonian parameter val-
ues p1 and p2 can be used to interpolatively calculate peak data for p1 < p < p2.
The associated computational cost is significantly smaller than that for a direct
quantum mechanical computation. Interpolative refinement is therefore always
advisable when distributed systems are simulated. In the following we present
some interpolation methods and discuss their application in EPR spectral simu-
lations.

2.7.1 Methods

Most commonly1 pieces of linear or cubic polynomials (splines) are used as inter-Interpolants

polants between data points (knots). An interpolant is said to be Ck-continuous
if all derivatives up to the kth are continuous at the data points. Simple linear
interpolation gives C0 lines, since the slopes of the interpolating lines jump at the
knots. Hermite cubic splines as used in Section 2.2.2 are C1-continuous, that is,
the first derivative is continuous at the data points, but the second not. Polyno-
mial interpolants can be easily integrated and differentiated.
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Figure 2.11: (a) Local linear interpolative refinement in a triangle of data A, B, and C. D
is an interpolated point as given in Eq. (2.109). (b) Fritsch-Carlson shape-preserving
spline interpolant (solid line) does not overshoot like a global spline (dashed).

There are two categories of interpolation procedures, global and local ones. Global
vs. localWith the former, the value at any given location depends on all the data values

while the latter involves the use of only the nearest points. Global cubic splines
are C2-continuous, whereas local cubic (Hermite) splines are C1. Linear interpol-
ation is always a local method.

Interpolation methods depend also on whether correct derivatives are avail- Derivatives
able as in Section 2.2.2 or have to be estimated. For peak data interpolation, de-
rivatives are too expensive to calculate, so that either global interpolation with
suitably chosen boundary conditions or a local method with an appropriate de-
rivative estimate is used.

For interpolation over a 2D parameter domain like the (φ, θ) space of spin sys- 2D
tem orientations, global or local cubic tensor-product splines can be used, if data
are computed over a rectangular grid. If not, more general local methods can be
applied. The simplest works on a triangle formed by three knots and interpolates
linearly in between as illustrated in Figure 2.11(a), giving

yD =
k
n

(yB − yA) +
l
n

(yC − yA) k = 1, . . . , n l = 0, . . . , k . (2.109)

This method is very convenient for general interpolative refinement [Wan95].
A more sophisticated but still efficient local interpolation approach that gen- Natural

neighbourserates very smooth surfaces for arbitrary knot distributions in 2D is the natural
neighbour interpolation [Oka00]. It is widely used in computational geometry
and geophysical sciences [Sam95], but too general for the interpolation problems
occurring in EPR spectral simulations.

There are situations where global or local cubic interpolation has to be applied Preserving
shapewith care. Standard interpolation methods do not respect the shape and mono-

tonicity of the data and can create artifactual oscillations that are not consistent
with the knot data. Fortunately, there exist a number of local cubic interpolation
methods that conserve the monotonicity of the data. One of them, due to Fritsch

1 Good overviews of interpolation are given in [Wat86, Kno99].
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and Carlson [Fri80], is illustrated in Figure 2.11(b). For knots xi−1 < xi < xi+1
with data points yi−1, yi and yi+1 the slope estimate mi at knot xi for the inter-
polant between xi and xi+1 is

mi =
1
2

(

yi − yi−1

xi − xi−1
+

yi+1 − yi
xi+1 − xi

)

if (yi+1 − yi)(yi − yi−1) > 0

mi = 0 otherwise.
(2.110)

From this the cubic polynomial can be constructed

y(t) = tT pi = (t3 t2 t 1)TM (xi xi+1 mi mi+1)
T (2.111)

with t = (x − xi)/(xi+1 − xi) and M as defined in Eq. (2.41) on p. 26. For more
details see [Kno99, Kva00].

2.7.2 Use in EPR

In EPR simulations of distributed systems, the main use of interpolation is to
refine peak data starting from computed values over a coarse grid of a spin
Hamiltonian parameter distribution such as that of a principal value of the g
matrix or a combination like E/D. Most prominent, though, is the orientational
distribution in the angles φ, θ and χ.

In contrast to peak positions, peak amplitudes usually depend on all threeAmplitudes
angles, so that a one-dimensional linear or cubic interpolation along χ followed
by an analytical integration of the interpolant can be used to obtain a cumulative
peak amplitude for a given orientation (φ, θ). In pulse EPR simulations such an
interpolant integration reduces the computational effort considerably. In cw EPR
and ENDOR, the χ integration is performed analytically (Eq. (2.53)).

The EPR and ENDOR amplitudes of Eq. (2.55) and Eq. (2.64) are real and
straightforward to interpolate over φ and θ, whereas the real and the imaginary
parts of the complex pulse EPR amplitude data have to be interpolated separately.
Using magnitude and phase instead is not advisable, since the phase can change
very abruptly with any spin Hamiltonian parameter, especially if the magnitude
is small.

Amplitudes are not always very smooth. In systems with anisotropies much
larger than the excitation bandwidth, only a small region of orientations takes
part in the experiment, intensities are zero outside (see Section 4.5). This affects
for example αvu in Eq. (2.60). In such cases Fritsch-Carlson shape-preserving
cubic splines have to be used.

Peak positions can be interpolated using tensor-product splines in the (φ, θ)Positions
domain. A rectangular grid1 over these two angles allows easy interpolation, but
even triangular grids can be handled efficiently by pre-interpolating them to a
rectangular grid over φ and θ. The choice of the interpolation method strongly

1 Orientational grids are discussed in detail in Chapter 4.

50



2.7 Interpolative refinement

PSfrag replacements
linear
interpolation

local cubic
interpolation

global cubic
interpolation

Figure 2.12: Quality of different interpolation schemes for an axial powder spectrum. Peak
positions at a mere 6 orientations (indicated by circles) were quantum-mechanically
computed and interpolated over a very fine grid.

Table 2.5: Methods used for interpolative refinement of peak data in various EPR experi-
ments.

Experiment Positions Amplitudes Level
cw EPR global cubic linear Bvu, Avu
ENDOR global cubic Fritsch-Carlson cubic ∆vu, Avu
pulse EPR linear linear ε(k), Σ, T(k), ∆

depends on the experiment being simulated. For direct spectral acquisition like
in cw EPR and ENDOR, the interpolant must be C2 (see illustration in Figure
2.12). Only in this case will the spectrum be continuous in its first derivative, as
can be inferred from Eq. (1.24). A C2 interpolant can only be obtained by global
cubic interpolation. For time-domain acquired pulse EPR spectral peaks, a linear
C0 interpolation method is usually sufficient.

The interpolation can be carried out either on the eigenpairs of the diagonal- Interpolation
levelised spin Hamiltonian prior to any peak computation or on the final peak posi-

tions and amplitudes. In cw EPR, the latter is preferable, since the computation
of resonance fields and amplitudes is complicated. In ENDOR, the computation
is simpler, but the interpolation on the peak list level is still faster. In pulse EPR,
it is much more efficient to interpolate the matrices Σ, T, ∆ and ε and not the final
amplitudes and frequencies (see Eq. (2.79) and Eq. (2.81)). The choice of methods
is summarised in Table 2.5.

In pulse EPR, interpolation can be employed when signals have to be integ- More pulse
EPRrated over a range of values for certain delay times in the pulse sequence. Integ-

rative boxcar detection can also be simulated by computing the echo intensity on
a coarse grid within the detection window and subsequently integrating a linear
interpolant.

Cubic interpolation was first applied to EPR spectral simulations by van Veen History
[vV78]. In [Gri90] bi-cubic interpolation was used. Mombourquette [Mom92]
uses linear interpolation along a spiral of orientations (see Section 4.4). In 1995,
Wang et al [Wan95] introduced a very fast orientational interpolation scheme
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Figure 2.13: Normalised cumulative distribution (cdf) of peak amplitudes A for a HY-
SCORE experiment on a typical S = 1/2, I = 1 system. The unweighted cdf indicates
the fraction of peaks with amplitudes smaller than A. The weighted cdf is obtained by
multiplying the unweighted cdf with the amplitudes.

combining 1D global cubic interpolation with 2D local linear interpolation within
orientational triangles as in Figure 2.11(b). Cubic splines along the B0 dimension,
as used in Section 2.2.2, are known for some time [Mab92, Gaf98].

2.8 Peak number reduction

The peak list will contain peaks with amplitudes differing by orders of mag-Peak list
reduction nitude. Peaks that are too low in intensity compared to the strongest one can

safely be neglected, since they will not have any visible influence on the final
spectrum. Given a peak list, a relative rejection threshold η is defined and all
peaks p with relative amplitudes Ap/Amax falling below this threshold are re-
moved. η is usually in the range of 10−4 to 10−3.

In a typical HYSCORE experiment for example, 90% of all peaks have intens-
ities below the rejection threshold (see gray distribution in Figure 2.13). Their
contribution to the final spectrum is negligible (white distribution in Figure 2.13).
This approach shortens the peak list considerably and hence lightens the compu-
tational burden on the next step in the simulation, the construction of the spec-
trum (see next chapter).

However, the time used for computing insignificant peaks has already beenMore time
savings wasted, so the performance gain is only partial. It is preferable to avoid their

computation in the first place. There are two ways to achieve this goal. One can
either estimate peak intensities in advance and select a limited set of transitions
(cw EPR, ENDOR) or adjust the absolute rejection level on the fly during the
peak computation (pulse EPR). Both approaches not only save costs for spectrum
construction, but also in the first spin dynamical part. In the following we will
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consider these two methods in more detail.

2.8.1 Transition pre-selection

In cw EPR and ENDOR many transitions are irrelevant since either the spectro- Quantum
numbersmeter frequency is far off the transition frequency or the transition amplitude is

negligible. In the high-field limit, that is, when all internal interactions in the spin
system are much smaller than the Zeeman interaction, it is easy to select only the
significant allowed EPR and ENDOR transitions based on the quantum numbers
mS and mI of the associated states. Forbidden transitions can thus be excluded.
Even for single-crystal simulations this saves time.

In cases of strong mixing of the Zeeman states (e.g., the system of Figure 2.5 on Estimates
p. 27) mS and mI are not good quantum numbers anymore, and all the peaks have
to be computed. Savings are only possible if distributed systems are simulated
and more than a single spin Hamiltonian is given. In the case of powder spectra
where usually N > 100 Hamiltonians are evaluated, peak data at a couple of
orientations n ≤ 10 are pre-computed. For each peak, the resulting amplitudes
are averaged and serve as an overall amplitude estimate. Peaks with an average
relative amplitude below η are excluded for the remaining N − n orientations.
Care has to be exercised in the case of strong mixing, where amplitudes can be
strongly orientation dependent.

Many peaks can be excluded without evaluating their amplitudes. If a peak Range
filteringposition falls outside the field or frequency range of interest for all n orientations

chosen above, the peak can be neglected even if it has significant amplitude. In
a general pulse EPR simulation, this screening can throw out as much as 80% of
all peaks theoretically available from the pre-computed Σ, ∆ and T.

2.8.2 Adaptive thresholding

In pulse EPR, screening for significant amplitudes turns out to be more involved,
since amplitudes strongly depend on the orientation of the spin system, and ex-
perimental parameters such as interpulse delays can create narrow-ranged blind
spots where the amplitude drops to zero. A simple and rough estimate like for
cw EPR and ENDOR is not possible.

Threshold η is relative to the maximum peak intensity. In the case of a HY-
SCORE spectrum, this is

Amax = max
i,j,k,l

TijΣjkT†
kl∆ li . (2.112)

Since it is not possible to compute Amax without computing all the products, a
different road to thresholding has to be taken.

The procedure is as follows (see Figure 2.14). The first peak of the first spin Adaptive
methodHamiltonian is computed, no matter how strong it is. Its amplitude will be the

maximum so far, Ãmax. If the amplitude of the next peak A is smaller than η Ãmax,
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Figure 2.14: Adaptive thresholding. All peaks in the shaded area are ignored.

it is ignored, but if A ≥ η Ãmax, it is kept for spectrum construction. If, addition-
ally, A > Ãmax, then the current maximum Ãmax is adjusted. This continues until
the last peak of the last spin Hamiltonian has been examined and possibly com-
puted. In this adaptive procedure the maximum peak amplitude is computed on
the fly, and the threshold is adjusted continuously. Only at the very beginning of
the simulation amplitudes below the final absolute rejection threshold ηAmax are
computed.

The fact that pulse EPR amplitudes are products of matrix elements can bePartial
products used to apply the above adaptive thresholding procedure already during the com-

putation of the products. If Σ and ∆ in Eq. (2.112) are normalised so that their
maximum elements are 1, Amax will never be larger than 1. Consequently, if a
product TijΣjk is below the current threshold η Ãmax, the total amplitude contain-
ing this product will be below η Ãmax, independent of the matrix elements T†

kl and
∆ li. Thus, the peak computation is aborted at the earliest moment possible, and
the total recursive computation of all amplitudes containing the product TijΣjk
is avoided. In connection with range filtering, this method increases the speed
of pulse EPR simulations tremendously. The combined approach is illustrated in
Figure 2.15.

2.9 Performance issues

The three numerical workhorses in any quantum-mechanical computation ofWorkhorses
peak data that does not rely on explicit formulas are matrix exponentiation, mat-
rix diagonalisation and matrix-matrix multiplication. The objective of any al-
gorithm is to keep the number of diagonalisations, exponentiations and multi-
plications at a minimum, and at the same time to perform these formidable tasks
in a time as short as possible. Matrix multiplications are very elementary oper-
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Figure 2.15: Filtering and adaptive thresholding in FD simulation of pulse EPR experi-
ments.

ations. They are O(N3) and are nowadays available in optimised form for all
computational platforms.

Algorithms for matrix diagonalisation are well established [Gol96] and work Diagonali-
zationwith an O(N log N) efficiency, where N×N is the size of the matrix. If only eigen-

values are needed, the diagonalisation is substantially faster. In EPR simulations
all matrices are Hermitian, for which there are dedicated algorithms available in
efficient implementations like the LAPACK library [And99].

Exponentiation of a matrix A can be reduced to diagonalisation and a basis Exponen-
tiationtransform

expA = U expΛ U† with A = UΛU† , (2.113)

where Λ is the diagonalised form of A and expΛ a shorthand notation for taking
the exponent the diagonal elements of Λ. U is the matrix of column eigenvectors
of A and is always unitary if A is Hermitian. This eigenpair method is easiest
to implement, but Padé approximations [Gol96] and Krylov subspace projection
methods [Sid98] are used as well.

The larger a spin state space is in EPR, the sparser Hamiltonian and other op- Sparse
methodserator matrices are. There are special methods for handling sparse matrices, but

they have not been applied in EPR spectral simulations so far except in the work
of Freed [Sch89].

Improvements in the algorithms for matrix diagonalisation and exponentiation
will directly translate into improved performance of EPR simulation software.
But such research is definitely beyond the realm of computational EPR.
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New in this chapter:

. Separate treatment of spectral construction and its classification in spec-
tral and time domain acquisition

. Distinction between sampling and boxcar detection in simulations

. Simplified formulas for pseudomodulation (p. 61)

. Analytical projective formula for anisotropically broadened line shapes
(p. 69)

. Concept of 2D projections

. A thorough analysis of construction methods for time-domain signals

. An excellent approximate method for time-domain signal construction
from a list of peaks, based on convolution and deconvolution (Section
3.2.3)

In the last chapter we have explained how a list of peak positions and intensit-
ies can be efficiently computed from a set of given spin Hamiltonian parameters
and the experimental settings. In this chapter we proceed to the second step of
spectral simulations, that is, the construction of the experimental spectrum from
its peak list representation.

The construction procedure depends on how the spectrum is acquired in the ac- Acquisition
typestual experiment. There are two types of acquisition, depending on which domain

is swept. For both types, the sweep can be linear or stochastic.
One type is the direct acquisition of the spectrum by sweeping the spectral

domain variable. The most prominent example is cw EPR, where the static field is
swept, but all field-swept pulse EPR experiments and most ENDOR experiments
belong to this type as well.

The other type is the Fourier Transform type of acquisition. Spectra are ac-
quired as a function of the abscissa variable in the inverse spectral domain. If the
final spectrum is a function of frequencies, it is a time variable that is swept. All
pulse EPR and some pulse ENDOR experiments belong to this category.

We dedicate one section to each type and present for both a variety of methods
available for spectrum construction. Section 3.1 deals with the case of spectral do-
main acquisition, whereas Section 3.2 discusses time-domain experiments. Note
that this distinction is based purely on computational considerations. In Section
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3.3 we show an efficient method to quickly evaluate line shapes, a task central to
both spectral and inverse domain conversions.

The choice of method also depends on whether anisotropic (homogeneous orAnisotropic
widths inhomogeneous) broadenings in the form of strains are present. If not, a line

shape can be simply added by convolution in the spectral domain after the stick
spectrum has been constructed. This is the usual procedure in pulse EPR, where
line width and line shape anisotropies are generally neglected. Broadenings are
more or less isotropic, since they are determined by limited acquisition times, the
excitation width of the pulses and broadening effects of the apodization window
used. In cw EPR, anisotropies are much more common. They are mostly due to
strains, making the line widths orientation dependent. Here we present methods
for both isotropic and anisotropic broadenings.

3.1 Spectral domain acquisition

In this section, spectral construction methods for directly acquired spectra are
discussed. When the spectral domain is swept directly, a given peak corresponds
to a simple Kronecker delta peak in the theoretical spectrum with intensity Ip and
position Pp

f (y) = Ipδ(y− Pp) , (3.1)

if we neglect for the moment the line width Γp and any effects of integrations,
electronic filters and other manipulations on the signal pathway.

For computer acquisition, the continuous spectrum f (y) is digitised along bothDigitisation
abscissa and ordinate. Along the abscissa only a finite number of points yi is
sampled, usually separated by a constant distance ∆y = yi − yi−1. Each meas-
ured analogue value S(yi) = S[i] is converted to a 8- to 20-bit integer number
S[i] using an analog-to-digital converter. This ordinate digitisation is always neg-
lected in spectral simulations, where it is assumed that all experimental spectra
are measured properly to avoid any ordinate quantisation effects. Spectral simu-
lations commonly use floating point numbers to represent signals.

The values measured also depend on whether the spectral signal is integratedIntegration
before digitisation or not, as illustrated in Figure 3.1. In both cw EPR and cw
ENDOR signals are integrated between two sampling points yi−1 and yi, so that
the value sampled at yi is proportional to

S[i] ∝ A[i] =

∫ yi

yi−1

f (y) dy . (3.2)

Any spectral features between yi−1 and yi are integrated and contained in S[i],
though only in a cumulative way.

In all other spectral-domain experiments (in pulse ENDOR and any 2D exper-Sampling
iment with field or radio frequency along one dimension), the signal is sampled
directly at the points yi

S[i] ∝ f (yi) (3.3)
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Figure 3.1: Two different detection modes for signals measured and sampled in the spec-
tral domain.
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without integration, so that the final signal S does not contain any information
on the behaviour of f between yi−1 and yi.

Any careful spectrum construction algorithm must take this difference into ac-
count and use different methods for the two detection modes. A digitised integ-
rated signal appears shifted and slightly distorted compared to the signal proper
(see Figure 3.2). These distortions are only on the scale of one step increment on
the abscissa, but they may harm accurate spectral fitting in the case of narrow,
but anisotropic lines.

Not all spectrum construction methods presented in this chapter are able to
produce both types of signals. The histogram method for example (3.1.2) per-
forms a digitised integration (Eq. (3.2)) and cannot be adapted to accommodate
direct sampling, unless the derivative of the spectral function can be computed.
All projection methods (3.1.4) and line shape copying (3.3) can handle both types.

There are a number of additional effects in experimental spectra acquired in the
spectral domain that can be modelled separately after the spectrum construction
itself.

In swept experiments the finite sweep speed can give rise to disturbing arti- Transient
effectsfacts. In cw EPR, sweeping the external magnetic field too quickly distorts the
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Figure 3.3: First harmonic pseudo-modulation by convolution of the absorption spectrum
with a modulation kernel. 2Bm is the peak-to-peak modulation amplitude.

spectrum. The theory developed in Chapter 2 is valid only in the limit of infin-
itely slow scans. In ENDOR, the radio frequency sweep heats the sample and
saturates nuclear transitions and thereby changes its spectral response, often res-
ulting in a heavily distorted baseline. Measuring the values S[i] with a random
acquisition order of i rather than a linear incrementation strongly reduces these
effects. Since transient sweep phenomena do not contain information about static
spin Hamiltonian parameters, computer simulations do not include them, and it
is up to the experimentalist to acquire distortion-free spectra.

Electronic manipulations on the signal pathway can usually be modelled by ap-RC filter
plying digital filters to the digitised signal. E.g. the common electronic resistor-
capacitor (RC) filter with the time constant Tc = RC (resistance R and capacit-
ance C) in cw EPR spectrometers is equivalent to the application of a single-pole
recursive filter to the signal S[n], giving

T[n] =
n

∑
k=0

akS[n− k] +
n

∑
k=1

bkT[n− k] (3.4)

with the only non-zero coefficients

a0 = 1− e−tsampl/Tc and b1 = e−tsampl/Tc , (3.5)

where tsampl is the sampling time. Bandwidth filters in pulse EPR are also easy to
apply to the spectrum in a separate step.

In cw EPR experiments, the static magnetic field along zL is usually modulatedField
modulation

B(t) = B0 + Bm sin(2πνmt) (3.6)

with frequency νm and amplitude Bm, and the signal is detected at the first or
second harmonic of νm, yielding spectra resembling the first or second derivative
of the absorption spectrum S(B0) for small Bm. In simulations, this modulation
effect can be added in a separate step after the computation of the absorption
spectrum. The so-called pseudo-modulation [Hyd90] consists of a convolution
of the absorption spectrum with an appropriate modulation kernel function (see
Figure 3.3)

S(n)
m (B0) = S(B0) ∗Mn(B0, Bm) (3.7)
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to give the modulated spectrum S(n)
m , where n indicates the detection harmonic.

Mn is the Fourier transform of a Bessel function of the first kind and order n, Modulation
kernelwhich can be expressed1 in terms of a Chebyshev polynomial Tn of the first kind

and order n

Mn(B0, Bm) = in
∫ ∞

−∞

Jn(βBm) eiβB0 dβ = (−1)n 2Tn(B0/Bm)
√

B2
m − B2

0

. (3.8)

For the first two harmonics, the kernels are explicitly

M1(B0, Bm) = − 2(B0/Bm)
√

B2
m − B2

0

M2(B0, Bm) =
4(B0/Bm)2 − 2
√

B2
m − B2

0

. (3.9)

The pseudo-modulation approach is valid as long as νm is much smaller than
the line width in the spectrum. Otherwise the true multi-photon nature [Käl03]
of the field-modulated cw EPR experiment unveils and leads to the appearance
of sidebands which are not modelled by Eq. (3.7).

3.1.1 Exact solutions

As a reference against which numerical spectrum construction methods can be
tested for accuracy, exact powder spectra have to be computed, at least for some
basic situations. Analytical expressions are obtained by solving Eq. (1.24) for
given y and A. For most spin systems this is impossible, but when A is assumed
to be independent of Ω and set to 1, the spectrum of a two-level (S = 1/2) system
can be computed.

For the field-swept spectrum of such a system with orthorhombic g matrix Field sweep
full analytical expressions have been derived by Kneubühl2 [Kne60]. If the three
principal g values are ordered g1 > g2 > g3 and all three are different, we have
(see Figure 3.4)

B1 ≤ B ≤ B2 : S(B) =
2
π

B1B2B3B−2
√

(B2
1 − B2

2)(B2 − B2
3)

K(k) (3.10)

B2 ≤ B ≤ B3 : S(B) =
2
π

B1B2B3B−2
√

(B2
1 − B2)(B2

2 − B2
3)

K (1/k) (3.11)

with the principal resonance fields Bi = hνmw/(µBgi), the parameter

k =

√

(B2
1 − B2)(B2

2 − B2
3)

(B2
1 − B2

2)(B2 − B2
3)

(3.12)

1 To the best of our knowledge, this is the first time these explicit expressions are reported.
2 Beltrán-López has recently revived them [Bel96, Bel99].
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Figure 3.4: Exact powder line shape for an S = 1/2 system with rhombic g matrix. Bi =
hνmw/(µBgi).

and the complete elliptic integral of the first kind

K(k) =

∫

π/2

0

dθ
√

1− k2 sin2 θ
K(0) =

π

2
K(1) = ∞ . (3.13)

The resulting spectrum has a pole at B2, but it is normalised

∫ B3

B1

S(B)dB = 1 . (3.14)

Formulas for the axial cases g1 = g2 > g3 and g1 > g2 = g3 are only special cases
of Eq. (3.10) and Eq. (3.11) with K(0) = π/2.

The expressions for a frequency-swept spectrum are similar. With the principalFrequency
sweep resonance frequencies νi = µBB0gi/h and a constant magnetic field B0 they are

ν1 ≤ ν ≤ ν2 : S(ν) =
2
π

ν
√

(ν2
1 − ν2

2)(ν2 − ν2
3)

K (k) (3.15)

ν2 ≤ ν ≤ ν3 : S(ν) =
2
π

ν
√

(ν2
1 − ν2)(ν2

2 − ν2
3)

K (1/k) (3.16)

with

k =

√

(ν2
1 − ν2)(ν2

2 − ν2
3)

(ν2
1 − ν2

2)(ν2 − ν2
3)

. (3.17)

These expressions can be analytically convoluted with a smoothing line shape
[Bel99], but since it is much easier to numerically convolute the spectrum after
construction, the analytical approach is not of much use.

Starting from the above analytical formulas, both sorts of detection discussed
above are possible. The formulas are directly applicable for sample-and-hold
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detection, whereas for integrative detection the integrals of the above formulas
have to be used. Closed-form expressions could not be found, but they are easy
to evaluate in a series expansion.

To our best knowledge, no explicit expressions are known for any but this
simple two-level system, so that numerical approximations are mandatory. Next
we will discuss the latter in detail, keeping the exact equations as a reference. In
one case, a sum of exactly computed axial powder line shapes has been used to
approximatively construct orthorhombic spectra [Var96].

To assess the accuracy of an approximated spectrum S̃ constructed with a nu- Spectral error
merical method, we compare it to the correct reference spectrum S using the total
deviation error

ε =

√

∑
i

(

S̃[i]− S[i]
)2 . (3.18)

The spectra must be normalised in the sense

∑
i

S[i] = ∑
i

S̃[i] = 1 . (3.19)

3.1.2 Histograms

Any numerical spectrum construction method starts from a list of peaks. The
simplest way to compute the spectrum associated with this list is to take each
peak in turn and plug its amplitude into the corresponding bin of the spectral
domain vector, thereby constructing a weighted histogram of the peak positions.

The peak’s amplitude Ap is added to the bin next to the peak’s position yp in Binning
the direction of the sweep of the spectral axis. For the 1D case and upward sweep
this means

S̃[k] ← S̃[k] + wp Ap k = dyp/∆ye (3.20)

(dae indicates the smallest integer larger than or equal to a). wp is the weight as-
sociated with peak p (see next chapter). S̃[k] collects the amplitudes of all peaks
with positions yk−1 < yp ≤ yk. Thus it corresponds to an integrative acquisi-
tion. In the limit of an infinite number of peaks with proper weights the total
approaches Eq. (3.2). Sampled acquisition cannot be modelled by this method.

For each peak the histogram method is exact and very quick. The big disad- Noise
vantage is the large number of peaks needed to obtain a smooth powder pat-
tern. If the number is too small, artifacts—so-called computational or simulation
noise—distort the spectrum. For a given number of peaks N, the level of compu-
tational noise depends on the spread of the spectrum ∆S, on the resolution of the
spectral axis ∆y and on the width ΓFWHH of the line shape convoluted with the
spectrum.

The error is determined by the number of peaks per bin in the spectrum, that Peak density
is, by the peak density

ρ = N∆y/∆S . (3.21)
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Figure 3.5: Errors ε of histogram approximations with different peak density ρ.
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Figure 3.6: Broadening of an axial powder spectrum by convolution with a Gaussian line
shape with different relative convolution widths λ (see Eq. (3.22)).

To avoid excessive noise, a value much larger than 1 is usually required. A few
levels of error and the associated peak densities are illustrated in Figure 3.5. It is
clear that ε ≤ 10−3 is necessary to make the error visually acceptable.

The noise can be substantially reduced by convoluting the spectrum with aSmoothing
line shape of sufficiently large width, resulting in a broadened rather than a stick
spectrum. If we look at the convolution line width ΓFWHH relative to the spectral
spread ∆S

λ = ΓFWHH/∆S , (3.22)

we see (Figure 3.6) that any spectrum with λ < 1/100 can be considered a stick
spectrum, whereas for λ ≥ 1 the anisotropic structure of the spectrum is com-
pletely lost and not discernible any more from the pure convolution line shape.

Figure 3.7 plots the error ε as a function of λ and ρ. An increase of an order
of magnitude in ρ reduces the error by a factor of 10, whereas an increase of an
order of magnitude in λ reduces it by approximately 5.

Although the histogram method is attractive due to its simplicity for both 1D
and 2D spectra, it performs very badly compared to all other construction meth-
ods, which we will discuss in the next subsections.

3.1.3 Gradient-broadened accumulation

Since a peak list of finite length contains spectra for only a finite number of orient-
ations, each computed orientation represents a set of neighbouring orientations,
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Figure 3.7: Dependence of the simulation error lg(ε) for an orthorhombic spectrum on
peak density ρ (Eq. (3.21) and relative line width λ (Eq. (3.22)) in the histogram method.
Random orientations were used.

which vary slightly in their resonance positions and amplitudes. The actual spec-
trum represented by the peaks of a single computed orientation is thus not a stick
spectrum, but a small broadened part of the powder spectrum. This effect can be
approximated by estimating an orientational strain for each peak and by incor-
porating it in the manner of Section 2.3 into the convolution line width. The line
due to a peak of a given orientation is thus broadened by an amount that bridges
the empty spectral region between itself and its computed neighbour. In this way,
a rather smooth powder spectrum with small spectral error can be constructed
with a small number of orientations (around 20 for axial, 60 for orthorhombic and
200 for low-symmetry spectra). This method, termed the mosaic misorientation
linewidth model, was introduced by Noble in the SOPHE software [Nob02b].

The orientational strain for all peaks at orientation Ω is proportional to the Position
gradientmagnitude of the orientational gradient of the peak positions yp at this orienta-

tion
σ(Ω) ∝ |∇yp(Ω)| . (3.23)

For a frequency-swept spectrum this is (see Eq. (2.28))

|∇νp| =
√

(〈v|GxL|v〉 − 〈u|GxL|u〉)2 + (〈v|GyL|v〉 − 〈u|GyL|u〉)2 , (3.24)

whereas for field-swept spectra the 1/g factor from Eq. (2.52) has to be included,
yielding

|∇Bp| =

√

(〈v|GxL|v〉 − 〈u|GxL|u〉)2 + (〈v|GyL|v〉 − 〈u|GyL|u〉)2

〈v|GzL|v〉 − 〈u|GzL|u〉
. (3.25)
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Figure 3.8: Spectrum accumulation using orientational strain broadened lines. (a) only
with g strain (b) including orientational strain. 105 computed peaks, peak density
ρ = 0.16.

The effective line width used isSmoothing
line width

ΓFWHH = αdp|∇yp| , (3.26)

where dp is the angular distance to the orientation next to p and α is an addi-
tional smoothing factor usually set to 1. Larger values of α result in smoother
but coarser spectra. For an axial spectrum with N evenly spaced orientations
between θ = 0 and θ = π/2, the angular distance is dπ/2/(N − 1), independ-
ent of p. For an orthorhombic spectrum and a sufficiently even distribution of N
orientations over 1 octant, d ≈ 0.844/(

√
N − 2N0.2) is a p-independent average.

The gradient is zero for principal axis directions, so that sharp artifacts at
the turning points of the spectrum can appear. They can be either excluded or
avoided by not choosing orientations along such singular directions. If there are
any additional line broadenings in the spectrum (g or A strain), the line widths
at the principal axis directions are not zero, and the problem is not present.

Both sampled and integrative detection are possible, depending on whether
an absorption line shape or the numerical derivative of its integral is used in
constructing the spectrum.

The method is illustrated in Figure 3.8 with a finite g strain present. The fewer
orientations are included in the spectrum, the broader it will be. Sharp spectra
will require more orientations than broad ones. Stick spectra cannot be computed
with this method.

The method requires the gradients to be computed, implying a longer compu-
tation time for a single orientation as compared to the histogram method. But
this is offset by the enormous reduction in the peak density ρ needed to reach a
certain level of ε.

The disadvantages of the orientational strain method can be circumvented and
it can be outperformed with the projective method introduced in the next subsec-
tion.
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3.1.4 Projections 1D

Peak positions (i.e. the resonance surfaces) and amplitudes change smoothly over
orientations and can be interpolated. In Section 2.7 this property has been ex-
ploited to cheaply compute new peaks. But instead of constructing interpolative
polynomials and evaluating them for many points to obtain more peaks, one can
project each interpolating polynomial analytically onto the spectral domain. The
resulting subspectra add up to the total stick powder spectrum. This project-
ive approach was already introduced to magnetic resonance [Ebe83] and applied
[Ald86] some time ago, but has since passed more or less [Pon99b] unnoticed.
Originally it was limited to stick spectra. Here we present its principles and ex-
tend its scope to anisotropic line widths.

First we discuss the general non-axial case. Consider a triangular patch Q (see Non-axial
spectraFigure 3.9(a)) of the resonance surface y(Ω) with positions and associated amp-

litudes A(Ω) computed on the three vertex orientations Ω1, Ω2 and Ω3. Using
Eq. (1.24), the spectrum of this patch is

S(y) =

∮

Q,y=y(Ω)

A(Ω)

|∇y(Ω)|ds . (3.27)

If the triangle is sufficiently small, two approximations can be made. First, the
amplitude can be assumed to be constant over the triangle, equal to A = (A1 +
A2 + A3)/3. Second, the magnitude of the gradient |∇y(Ω)| can be set constant,
that is, the resonance position depends linearly on the orientation within this
triangle. This leaves a simple line integral

S(y) =
A
|∇y|

∮

y=y(Ω)
ds . (3.28)

If the resonances at the three edges are ordered y1 ≤ y2 ≤ y3, we get

y1 ≤ y ≤ y2 : S(y) = aA
y− y1

(y2 − y1)(y3 − y1)
(3.29)

y2 ≤ y ≤ y3 : S(y) = aA
y− y2

(y3 − y2)(y3 − y1)
(3.30)

with the area a of the spherical triangle (see Eq. (4.9) on p. 94). These equations
describe a triangular subspectrum as illustrated in Figure 3.9(a). Its shape is inde-
pendent of the size and shape of the spherical triangle Q projected and depends
only on the peak positions at the triangle vertices. By dividing the entire orienta-
tional sphere into such spherical triangles and adding up the resulting subspectra,
an approximation of the powder stick spectrum is obtained (see Figure 3.10(a)).
Its integral is 4π, if all amplitudes are 1.

In the case of an axially symmetric resonance function, the projection is also Axial case
very simple. The resonance surface can be subdivided in spherical zones θi ≤ θ ≤
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Figure 3.9: (a) The analytical spectral projection of a small triangular orientational region
of a resonance surface gives a triangular spectrum. (b) The same projection for an axial
spherical zone gives a rectangular spectrum.
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Figure 3.10: Stick spectra approximated by the projection method. (a) non-axial case, (b)
axial case. N is the number of explicitly computed orientations.
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θi+1 with computed spectra at θi and θi+1 (see Figure 3.9(b)). Each of these zones
is projected separately. If the resonance and the intensity function are smooth
enough over the interval θ1 ≤ θ ≤ θ2, we can again assume the resonance gradi-
ent to be constant

|∇y(Ω)| = y2 − y1

sin(θ1 − θ2)
(3.31)

and approximate the amplitude by the mean A = (A1 + A2)/2. With a constant
gradient, a certain value of resonance will occur only once within a zone, so that
we finally obtain from Eq. (3.27)

y1 ≤ y ≤ y2 : 2πA
cos θ1 − cos θ2

y2 − y1
. (3.32)

Hence, each interval projected into the spectral domain gives a rectangular spec-
trum.

The projected axial spectrum (Figure 3.10(b)) contains steps between the dif-
ferent projected zones. According to Eq. (3.28), they could be made continuous
with quadratic splines and C1 continuous with cubic splines, but their analytical
projection in the style of Eq. (3.29) and Eq. (3.32) is not possible. A stepwise inter-
polation is possible, as was shown in Figure 2.12 on p. 51.

Eq. (3.29) and Eq. (3.32) describe the spectral function itself. For sample-and-
hold detection they are evaluated directly. For boxcar detection, their integrals
are used according to Eq. (3.2). These are straightforward to obtain.

Anisotropic line widths
Up to now, the projection method has only been designed for computing stick
spectra. But in the case of anisotropic line widths, it is still possible to use an
analytical projection approach, since convolutions of the basic projected spectral
building blocks in Eq. (3.29) and Eq. (3.32) are readily obtained.

In the axial case the rectangular subspectrum becomes the sum of two line Axial case
shape integrals (see Appendix A). If the shape is Gaussian with line width Γ, the
resulting function is

S(y) =
1

2(y2 − y1)

[

erf
(√

2
y− y1

Γ

)

+ erf
(√

2
y2 − y

Γ

)]

. (3.33)

For the non-axial case, the convolution of the triangular subspectrum is more Non-axial
casecomplicated. With the convolution function

F(x) =
1√
2π

e−2( x
Γ )

2
+

x
Γ

[

1 + erf
(√

2
x
Γ

)]

(3.34)

the resulting elementary spectrum is

S(y) =
Γ

y3 − y1

[

F(y− y1)− F(y− y2)

y2 − y1
+

F(y3 − y)− F(y2 − y)

y3 − y2
− 2

Γ

]

. (3.35)
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Figure 3.11: Convolution of projected elementary spectra with Gaussians of varying width.
(a) non-axial case (b) axial case. Spectra with relative line width λ = 0.05, 0.4 and 0.7
are highlighted.
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Figure 3.12: (a) Convoluted elementary spectra in the projective method for anisotropic
line widths. (b) Comparison of different construction methods for an axial spectrum
with anisotropic line width. 10 explicit orientations are used.

Anisotropic line broadening is commonly modelled by Gaussians, so we have
not derived the equations for Lorentzian broadening. The above expressions are
only valid for sample-and-hold detection, for boxcar detection they have to be
integrated.

Using the algorithm from Section 3.3.2, these equations can be evaluated quiteComparison
quickly. The convoluted elementary spectra for both axial and non-axial cases
are illustrated in Figure 3.11 for different relative line width. Figure 3.12 illus-
trates the application of the analytical projection to the construction of an axial
spectrum and compares all methods. In terms of spectral error ε, both gradient
broadening and projection work similarly well. But the projective method pro-
duces less pronounced wiggles, which become more disturbing if first-derivative
spectra are computed.

The difference between the gradient weighted line shape binning and the pro-
jections approach now becomes clear. With gradient broadening, each triangular
or rectangular subspectrum or segment is approximated by a Gaussian with a
line width to cover the spread of the subspectrum. For λ À 1 the two methods

70



3.1 Spectral domain acquisition

PSfrag replacements

(a) (b)

ν1 ν1

ν2 ν2

Figure 3.13: Projection of simplices for 2D spectra. (a) non-axial symmetry (b) axial sym-
metry.
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Figure 3.14: Discretisation for 2D spectra, (a) non-axial and (b) axial symmetry. The pro-
jections are the same as in Figure 3.13. The spectral amplitude in the square bins is
color-coded.

converge.
A very different but basically also projective method has been proposed by Contouring

Ponti [Pon99b]. The spectrum between the abscissa points yi and yi+1 is equal
to the area of the part of resonance surface falling between the two contour lines
y = yi and y = yi+1. This requires the computation of contour lines for all yi in
the spectral domain abscissa vector. Extension to spectra with transition intensity
anisotropy is possible, but computationally unfeasible. The contouring method
is without any practical relevance.

3.1.5 Projections 2D

The projective method of the previous subsection can be generalised to two di-
mensions. It is, however, substantially more complex than for 1D spectra and
can only be done for stick spectra. We only outline the basic concepts.

It can be shown that the spectrum of a set of orientations contained in a spher-
ical triangle produces a cake-slice-like pattern (see Figure 3.13). It has linear
edges if the resonance function is assumed to be linear in both sweep variables.
And it has constant height, if the peak amplitude is approximated by its average
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over the three vertices. In the axial case, a wall-like ridge is obtained.
Discretisation of these patterns into a finite-length 2D matrix is not straightfor-

ward (see Figure 3.14). Algorithmic concepts can be borrowed from computer
graphics (Bresenham line drawing algorithm, sweep line rasterisation of poly-
gons, anti-aliasing for fonts). 2D experiments with direct spectral acquisition of
both domains are, however, quite rare (e.g. the recently introduced 2D TRIPLE
[Epe00]), so we have neither implemented nor studied these 2D projections in
greater detail.

3.2 Time domain acquisition

All pulse EPR data are acquired by varying a time interval in the pulse sequence
of the experiment. A peak in these experiments corresponds to a harmonic (sin
or exponential) evolving along this time variable

sp(t) = Ap ei2πνpt e−λpt . (3.36)

For the moment, we neglect the anisotropy of the relaxational broadening λp and
assume that the last factor in the above expression can be added to the final spec-
trum by a simple convolution. The N-point Discrete Fourier Transform (DFT) of
sp will not be a delta peak, unless its frequency falls exactly on a DFT frequency.
Therefore, the spectral domain methods of the previous section are not applicable.
In the following we discuss various methods for constructing such time-domain
signals.

TD and FD signals of a single peak with amplitude 1 differ greatly in theirTD vs. FD
signals character. The TD signal is distributed over the entire domain, and its magnitude

is always 1. It seems not to be possible to devise any method that allows recon-
struction of the TD signal with less computational cost than the direct evaluation
of the exponential according to Eq. (3.43). On the other hand, most of the FD
signal is concentrated around the frequency ν of the exponential. This compact-
ness of the FD signal makes it possible to save computation time by constructing
only the important central part around ν and neglecting the small wings. Such
approximate methods sacrifice accuracy for the sake of computational efficiency.
There is only one FD approximation method used in the literature. It is identical
to the histogram method of Section 3.1.2.

To assess the quality of an approximation, we define error measures for bothError
measures TD and FD1. An appropriate error function in TD is

µTD(ν) = max
0≤n≤N−1

|s(ν)
approx[n]− s(ν)[n]| , (3.37)

which describes the maximum of the magnitude difference between the approx-
imate and the exact TD signal of a single exponential with amplitude 1 and fre-

1 These error measures are different from Eq. (3.18).
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quency ν. For FD the corresponding error measure is given by

µFD(ν) = max
0≤m≤N−1

|S(ν)
approx[m]− S(ν)[m]| . (3.38)

The average of µ over all possible frequencies ν is a frequency-independent Averages
overall error measure. It turns out that for all cases studied µ in the above formu-
las is periodic in ν with period ∆ν = (N∆t)−1, so that the average can be limited
to one period

εTD = N∆t

1/(N∆t)
∫

0

µTD(ν)dν . (3.39)

In FD, the corresponding error function

εFD = N∆t

1/(N∆t)
∫

0

µFD(ν)dν (3.40)

can be used. In practical computations, the integrals in the error functions have
to be approximated by sums. In this work we integrate over 801 test frequencies
uniformly distributed between two neighbouring DFT frequencies. The error
function varies slightly with N. It is minimal in the region 100 < N < 300, at
N = 1024 it is about 10% larger. We use a 128-point signal as standard.

The errors are visually noticeable if they are above 0.005. We thus can tolerate
errors below a significance limit of ε0 = 0.005.

3.2.1 Brute force

The overall TD signal is a linear combination of exponentials, and since the Fou-
rier transform is linear as well, it is sufficient to consider only a single exponential
with frequency ν and amplitude 1. Here we restrict ourselves to the 1D situation,
where ν is a scalar. Extension to 2D is straightforward, but would unnecessarily
complicate the notation.

The TD exponential with the frequency ν is given by TD formula

s(t) = ei2πνt . (3.41)

In an experiment, this signal is sampled at N points in time n∆t with 0 ≤ n ≤
N − 1 and the dwell time ∆t, giving

s[n] = s(n∆t) = ei2πνn∆t . (3.42)

The TD signal can be constructed by explicitly evaluating this formula for all n.
However, it is faster to compute s[n] by N − 1 consecutive multiplications

s[n] = s[n− 1] ei2πν∆t 1 ≤ n ≤ N − 1 (3.43)
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with s[0] = 1.
The FT of the TD signal in Eq. (3.42) defined byFD formula

S( f ) =
1
N

N−1

∑
n=0

s[n]e−i2π f n∆t (3.44)

is a periodic sinc function with a complex phase factor [Opp01]

S( f ) =
1
N

e−iπ( f−ν)∆t(N−1) sin [π( f − ν)N∆t]
sin [π( f − ν)∆t]

. (3.45)

It can be looked upon as a back-folded aperiodic sinc function. When this func-
tion is sampled at the frequencies m∆ f with the increment ∆ f = (N∆t)−1 and
0 ≤ m ≤ N − 1, the DFT of the original signal

S[m] = S(m∆ f ) =
1
N

e−iπ(m−κ) N−1
N

sin [π(m− κ)]

sin [π(m− κ)/N]
(3.46)

is obtained, with the scaled frequency κ = ν/∆ f . Though feasible, evaluation
of this expression for the impulse response is impractical due to its complexity
compared to TD.

The direct method (computation of the exponential in TD) needs one exponen-Performance
tial computation and N − 1 multiplications/peak. In the 2D case of an N × N
signal, (N − 1)2 multiplications/peak are needed. The performance of Eq. (3.46)
is even worse. The drawback of both methods lies in their slowness when many
peaks have to be accumulated to construct a spectrum.

3.2.2 Histograms

One could tentatively apply the same procedure as for directly acquired spec-
tra (Section 3.1.2). This speeds up the computation compared to the brute force
method, but introduces quite some error.

This histogram method is to the best of our knowledge the only FD approx-Peak binning
imation method reported. This straightforward approach, which has not been
studied in detail so far, takes a peak and rounds its frequency ν to the nearest
DFT frequency, i.e. to the nearest multiple of ∆ f

k∆ f = bκ + 1/2c∆ f = bν/∆ f + 1/2c∆ f . (3.47)

The peak is shifted by the frequency offset β = κ − k, which introduces a max-
imum rounding error of ∆ f /2. Then the value of the peak amplitude is added
to bin k in the N-point FD vector. The periodic sinc is thus approximated by a
slightly shifted periodic sinc, so that the discretisation of the latter gives a non-
zero value only in one bin of the FD vector. Finally, an IDFT generates the ap-
proximate TD signal.
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Figure 3.15: The histogram method. Solid: exact periodic sinc with ν = 13.4∆ f , dashed:
shifted periodic sinc with ν = 13∆ f . ¥: correct discretisation S[m],¤: Sapprox[m] in the
histogram approximation. Only the real part is shown.

The big advantage of this method lies in the fact that for each peak only one
rounding and one addition are needed. The speed-up compared to the direct
evolution in TD is enormous. However, the small frequency error introduced by
the rounding can cause significant errors in both TD and FD.

In FD, the distortion is obvious, as illustrated in Figure 3.15. The amplitude at Distortions
the centre is far from being correct, and the wings on both sides are completely
missing. In the figure the maximum magnitude error µFD is 1.04. In TD the phase
error increases with increasing n (Figure 3.16). If the rounding error is ∆ f /2, the
TD error µTD is 2.

In the case of multiple peaks, interference effects can make the errors very dis- Interference
turbing. For example, two exponentials with opposite amplitudes 1 and −1 and
frequencies (k − 1/2)∆ f and (k + 1/2)∆ f are shifted by the histogram method
to k∆ f and (k + 1)∆ f respectively, and generate a purely real spectrum, whereas
the correct spectrum should only have a non-zero imaginary part. In another un-
favourable case, two peaks with amplitudes 1 and −1 and frequencies (k− α)∆ f
and (k + α)∆ f with 0 ≤ α ≤ 1/2 are both rounded to k∆ f and accumulated into
the same bin. As a consequence, they cancel completely, although they should
give a single broadened peak around k∆ f . This error is maximum at α = 0.372
with µFD = 1.44.

To remedy for these errors, the histogram method can be applied using an FD expansion
extended FD vector of length eN (e > 1), where the DFT frequency spacing is
∆ f /e. Increasing the resolution of the frequency axis by a factor of e reduces the
maximum rounding error to ∆ f /(2e). The IDFT gives a TD signal of length eN,
where the first N points are an approximation of the exact TD signal.
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3.2 Time domain acquisition

Figure 3.17 shows the dependence of the average TD and FD errors on the
expansion factor e. With increasing e the error decreases, but it is obvious that
e ≥ 8 is needed to reduce at least the mean FD error to an acceptable level. This is
at the expense of a larger data array and a correspondingly slower IDFT, which
might become prohibitive in 2D. A 256× 256 TD signal would require the IDFT
of at least a 2048× 2048 FD array.

3.2.3 Convolution approximation

The approximation method we introduce here is based on convolution and de-
convolution of the stick spectrum with a truncated and windowed sinc function
(see the schematic illustration in Figure 3.18).

Truncating the full kernel function Eq. (3.46) to a region 2M∆ f wide around Principles
its centre f speeds up the computation, but introduces truncation errors. With
decreasing M, the computation gets faster, but the truncation errors increase. In
the optimal case, M has to be chosen small enough to improve speed and large
enough for the error to fall below a certain level of significance. The kernel func-
tion itself can also be varied to minimise the error.

The truncated kernel is best designed by apodising a sinc function with a win- Kernel design
dow function. This is a standard technique for filter design in digital signal pro-
cessing [Opp01]. The sinc function

sinc(γx) =
sin(πγx)

πγx
− 1 ≤ x ≤ 1 (3.48)

contains a width parameter γ. For apodization we use the Kaiser window,

K(α, x) =
I0

(

α
√

1− x2
)

I0(α)
− 1 ≤ x ≤ 1 (3.49)

with the zeroth-order modified Bessel function of the first kind I0 and the width
parameter α. K gives the best results among all classical windows. The resulting
truncated kernel

R(y) = sinc
(

γ
y
M

)

K
(

α,
y
M

)

−M ≤ y ≤ M (3.50)

is zero outside the interval [−M; M] and depends on α and γ and on the half-
width M. In contrast to Eq. (3.45), this function is purely real, and its evaluation
is therefore twice as efficient as that of a complex truncated periodic sinc.

For each peak the truncated kernel R(y) is then sampled into the eN-point Convolution
spectral vector S̃, centred at the position of the peak (see Figure 3.18)

S̃[kp + m] ← S̃[kp + m] + R(m− βp)

{

βp 6= 0 −M + 1 ≤ m ≤ M
βp = 0 −M ≤ m ≤ M .

(3.51)
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Figure 3.18: Design and application of the convolution method. Design steps: (A) kernel as a product of sinc function and Kaiser
window, (B) correction window as average IDFT. Application steps: (1) continuous convolution of peak list and kernel, eN-point
discretisation, (2) IDFT, (3) division by discretised correction window in TD (equivalent to circular convolution in FD), (4) DFT of
the first N points.
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In the case βp 6= 0, i.e. when the peak frequency lies between two DFT frequen-
cies, 2M points have to be evaluated per peak. If the peak frequency exactly co-
incides with a DFT frequency (βp = 0), 2M + 1 points have to be evaluated (see
Figure 3.19(a)). If the peak lies on the edges of S̃, the sampled kernel has to be
folded around. Similar to the histogram method, an expansion factor e (default
value e = 4) is used. Its influence on the performance is analysed later. Mathem-
atically, Eq. (3.51) corresponds to a continuous circular convolution of the stick
spectrum T consisting of delta peaks at the given frequencies with the truncated
kernel R(y)

S̃ = T ~ R . (3.52)

The result S̃ is a pseudo-spectrum with peaks at the correct positions, but with
distorted line shapes.

The distortion can almost completely be removed by deconvoluting the ob- Decon-
volutiontained pseudo-spectrum with the truncated kernel

S = S̃ ~−1 R . (3.53)

This circular deconvolution can be performed in TD by dividing the IDFT of the
pseudo-spectrum by a correction window W obtained by IDFT of the sampled
kernel R(y− βp)

Wβ[n] =
eN/2

∑
m=−eN/2+1

R(m− β)ei2πnm/eN . (3.54)

The correction window, however, is different for each peak and depends on its
frequency offset β, since each β corresponds to a different set of 2M (or 2M + 1)
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M γopt αopt εTD εFD
1 1.6695 4.7255 0.05456 0.03368
2 1.4889 10.9444 0.00185 0.00111
3 2.5878 11.3687 0.00094 0.00036
4 3.8593 12.7798 0.00066 0.00018
5 5.2596 13.4354 0.00030 0.00012

Table 3.1: Optimal parameters α and γ and the errors εTD and εFD for the convolution
method depending on kernel half-width M.

values from the continuous kernel R, which in turn give different window func-
tions in TD. If there is more than one peak in the pseudo-spectrum, the correction
window cannot be optimal for all of them. But the mean error εTD can be minim-
ised by using an average of the correction windowWβ over all β

W[n] =

1
∫

0

Wβ[n] dβ . (3.55)

If the continuous kernel is symmetric around its centre, this average window W
is a real function.

The first N points of the TD signal obtained after application of W are an excel-
lent approximation of the correct TD signal (see Figure 3.18).

The entire procedure above depends on M, α and γ. M is the parameter whichOptimal
parameters determines the computational cost. For a given M, α and γ determine the quality

of the approximation. α and γ are simultaneously optimised by a least-squares
minimisation of the average maximum time-domain deviation εTD (Eq. (3.39)).
The resulting filter kernels for M = 1 to 4 are shown in Figure 3.19(b). Table
3.1 lists optimal α and γ values for different values of M. Both α and γ strongly
depend on M. The minima in the error function are very flat in the region αopt ±
1/2. On the other hand, the error function is more sensitive to γ.

Numerically, quasi-continuous representations with approx. 5000M points of
the kernel R and the average window W can be pre-computed and re-used (see
Figure 3.18, design steps). Instead of evaluating R in Eq. (3.51) anew for each
peak, the values can be taken from its pre-computed representation (see Section
3.3.2). Peak frequencies are rounded to the next discrete frequency in this rep-
resentation and are shifted by ∆ f /104 at the most. The error introduced by this
small shift does not contribute significantly to the overall error of the convolu-
tion method. To use the quasi-continuous correction window representation for
the deconvolution of an eN-point signal, it has to be interpolated to eN points to
obtain W[n].
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3.2.4 Performance and error analysis

Figure 3.20 shows the errors εTD and εFD of the convolution method based on the TD and FD
errorsoptimised sinc/Kaiser kernel. As expected, both errors decrease with increasing

M. εTD is 2–3 times larger than εFD. By increasing M from 1 to 3, the error
compared to the histogram method drops by almost two orders of magnitude
in both TD and FD domain. The kernel with M = 2 gives already satisfactory
results and is the one of our choice.

Figure 3.17 on p. 76 shows the error of the convolution method with the stand-
ard M = 2 sinc/Kaiser kernel as a function of the expansion factor e. For e = 1,
the new method is not much better than the histogram approach, but it gains
rapidly when increasing e to 4, where both TD and FD error levels are no longer
significant.

Figure 3.21 shows the dependence of the errors µTD and µFD of the sinc/Kaiser
kernel on the offset β of the peak from a DFT frequency. The TD error is periodic
with period β/e and is most sensitive to the offset around nβ/e. This means
that the averaged window used is not the best choice for peaks close to DFT
frequencies, but it is still the best choice to minimise the overall mean error. The
FD error exhibits a more complex behaviour.

The error of the convolution method is different in character from the one of Amplitude
errorthe histogram approach, which is a pure frequency error caused by the frequency

shift (Figure 3.16(a)). In the convolution method only the amplitude is incor-
rect and becomes more accurate with increasing time (see the residuals in Figure
3.16(b)). Phase and frequency are exact within numerical accuracy.

The origin of the error is not obvious. The fact that an average window is used Error origin
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Figure 3.21: µFD (solid) and µTD (dashed) as a function of the frequency offset β for the
sinc/Kaiser kernel with M = 2, e = 4.

explains only part of it. For a single peak there would still be an error, if the
matching correction window were used. In the aperiodic case, a finite FD signal
like the sinc/Kaiser kernel always has an infinite inverse FT. Hence the correct
deconvolution window would have infinitely wide wings that asymptotically
approach zero in both directions on the time axis. But since the window is only
represented in a finite TD, the tails fold back, and the window is aliased. The
shorter the kernel in FD, the wider is its associated window in the TD, and the
stronger is the effect of back-folding. Thus it is the deconvolution of the pseudo-
spectrum with an aliased version of the correct window that accounts for most
of the error. The impact of this aliasing is already inherently minimised by the
least-squares fit of α and γ to the TD error εTD.

The aliasing of the correction window also explains why the convolution me-
thod works well only for e ≥ 3 (Figure 3.17). For e < 3, significant parts of the
window lie outside the finite TD region and are folded back.

Often physical line shape functions (either Lorentzians or Gaussians) with linePhysical
kernels widths γ are sampled into the FD, truncating the line shape function at some

distance kγ from its centre. Although this choice is obvious, it is not the best. We
have examined these functions, using the kernels

R(y) =

[

1 +
4
3

(γy
M

)2
]−1

and (3.56)

R(y) = exp
[

−2
(γy

M

)2
]

(3.57)

with −M ≤ y ≤ M and optimising γ for each M exactly as in the sinc/Kaiser
kernel design. It turned out that even with this γ optimisation Gaussians and
especially Lorentzians perform significantly worse than the sinc/Kaiser design,
as can be seen from Figure 3.20.

If different oscillating components in an experimental signal decay at differentRelaxational
anisotropy
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Figure 3.22: Speed-up of the convolution method (M = 2, e = 4) compared to the direct
TD evolution. P: number of peaks, N: number of points along one dimension in TD
(2D: total N × N points). (a) 1D, (b) 2D.

Method 1D 2D
TD evolution O(PN) O(PN2)
FD histogram O(P) O(P)
FD convolution O(PM) O(PM2)

Table 3.2: Asymptotic computational costs of TD construction in terms of arithmetic op-
erations for various methods. P: number of peaks, N: number of points along one
dimension in TD (2D: total N × N points).

rates, each peak in the spectrum will have a different line width. In this case,
the explicit evaluation of a line shape function for each peak is mandatory, and
neither the histogram nor the convolution approximation are applicable.

However, line shapes in pulse EPR spectra of disordered systems are not de-
termined by these relaxational broadenings, but rather by unresolved couplings
resulting in an additional almost isotropic inhomogeneous broadening. In all
practical cases it is therefore sufficient to convolute the spectrum with a Lorent-
zian or Gaussian line shape after the powder spectrum has been constructed from
the peak list.

The convolution method is much faster than the direct TD evolution according Performance
to Eq. (3.43). The asymptotic computational costs for all three methods are listed
in Table 3.2. All costs scale linearly with P, but only the TD evolution depends
directly on N. The dependence of the convolution method’s performance on M
and M2 has little impact, since M is small. However, in the two FD methods, the
additional cost for the IDFT [Pre92] may be significant.

Figure 3.22 illustrates the overall relative performance of the convolution me- Example
thod based on an analysis of the number of floating-point operations involved.
For 1D experiments the convolution method is always faster than the TD evol-
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Figure 3.23: Simulated 14N HYSCORE spectra, (a) histogram method, (b) convolution
method. There is no visible difference between (b) and a spectrum accumulated with
the exact TD evolution method. Spin system and experimental parameters as in Table
3.3. Logarithmic contour levels between 0.01 and 1 relative to the maximum intensity.

ution, and it performs exceedingly well in 2D experiments. The smallest gains
are found in situations with P < 102, where the cost of the additional IDFT is
significant, and in the case of N < 25, where the small value of N does not penal-
ise the TD evolution too much. However, both situations are quite unusual. For
pulse EPR simulations, N ≈ 28 and P ≈ 105 are common. In this case, 1D peak
accumulations are 20 times and 2D accumulations are 1000 times faster. The er-
ror is below the significance level ε0 and 200 times smaller than the error in the
histogram method.

As an illustrative example we apply the new method to the simulation of aExample
typical HYSCORE spectrum (see Figure 3.23). HYSCORE is a basic 2D ESEEM
experiment [Sch01] and the primary method for determining weak interactions
between electron spins and nuclei such as hydrogens and remote nitrogens. The
powder spectrum is computed as the sum of single crystal spectra from 4186 ori-
entations. The computation of the resulting list of 489 544 peaks takes 13.27 s on
a standard PC as summarised in Table 3.3. For the accumulation the convolu-

84



3.3 Spectral broadening

computation time [s]

Method
peak list
generation

spectrum
construction

total

TD evolution 13.27 2570.0 2583.3
histogram 13.27 0.74 14.01
convolution 13.27 3.05 16.32

Table 3.3: Computation times for a typical 2D HYSCORE spectrum for different spectrum
construction methods. Spin system: S = 1/2, g = 2, one 14N nucleus (I = 1, gn =
0.4038), A = 5 MHz, e2qQ/h = 2.4 MHz, η = 0.5. Experimental parameters: τ =
136 ns, pulse lengths 10/10/20/10 ns, B0 = 350 mT, ν = 9.797369 GHz. 256 × 256
points, ∆t = 50 ns in both dimensions. 4186 orientations. Computed on a standard
Linux PC (866 MHz Pentium III, 128 MB RAM).

tion method is only 4 times slower than the histogram method, but 840 times
faster than direct TD evolution. In fact, with the latter approach the spectrum
accumulation consumes 99.5 percent of the total computation time. As can be
seen in Figure 3.23, all the artifacts from the histogram method are absent in the
spectrum computed with the convolution method.

Combined with the frequency-domain formulas for pulse EPR of the previ-
ous Chapter, the convolution method greatly enhanced the speed of such simula-
tions. When interpolation and thresholding are used additionally, the speed-up
compared to a straightforward TD approach with simple, but expensive TD evol-
ution can be beyond three orders of magnitudes for electron spin system with
more than one coupled nucleus.

3.3 Spectral broadening

All methods presented above are valid only if all peaks have the same line width.
In this case the corresponding line shape, usually a Gaussian or a Lorentzian (see
Appendix A), is added by convolution to the final spectrum. This is discussed in
Section 3.3.1. If peaks have different line widths, each of them has to be added
to the spectrum separately. The methods from the previous sections are not well
suited for such situations. We show a fast method of accumulating such spectral
peaks with different line widths in Section 3.3.2. The performance of this step is
absolutely crucial for the overall performance of simulation, especially for pulse
EPR.
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3.3.1 Fast convolution

The convolution of two discrete signals f and g is defined by

( f ∗ g)[m] =
+∞

∑
k=−∞

f [k]g[m− k] . (3.58)

For numerical evaluation, one can either use this equation directly or resort to
the IDFT/DFT approach

s ∗ w = IDFT [DFT(s) DFT(w)] . (3.59)

In the latter case, a spectral vector s of a certain length N has to be zero-filled to
2N + 1 points to avoid folding-around of line shapes of peaks near the edges of
the spectrum. w is a vector of the same length containing the line shape with its
maximum at DFT frequency zero.

3.3.2 Scaled copying

If all the peaks comprising the spectrum have different line widths, there is no
way around sampling the associated line shape into the spectral array for each
peak separately. The straightforward evaluation of the line shape formula for
each peak is simple, but quite time consuming. There is a much more elegant and
efficient way to obtain the same result [Hag85a]. This scaled copying approach,
as we term it, is illustrated in Figure 3.24.

The method starts by preemptively evaluating the line shape function with anTemplate
arbitrary line width Γt and centre νt0 over a very fine grid (in practice between
103 and 105 points), thus creating a quasi-continuous template T. The template
shape is cut off at points where the function values fall below significance. A
Gaussian for example falls below 10−3 relative to its maximum at 1.58 ΓFWHH
from the centre, a Lorentzian at 15.9 ΓFWHH (see Appendix B).

This template is then used to construct the line shape in the actual spectrum.Copying
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3.3 Spectral broadening

For a peak with amplitude Ap, centre νp0 and line width Γp, the abscissa is shifted
by the peak offset and re-scaled by the line width ratio using

S
(

νp
)

← S
(

νp
)

+ ApT (νt)

νt = νt0 +
Γt

Γp
(νp − νp0) .

(3.60)

Stepping k by 1 in the discretised spectrum corresponds a step of

α =
Γt/∆νt

Γp/∆ν
(3.61)

in the template. Using this abscissa scaling factor α and starting from the left in
the template, a simple iteration adds the correct line shape to the spectrum

k ← k + 1
m ← m + α

M ← bmc
µ ← m−M

S[k] ← S[k] + Ap ((1− µ)T[M] + µT[M + 1]) .

(3.62)

In this way, two adjacent values in T are linearly interpolated to obtain the point
needed in S, as shown in Figure 3.24.

The line shape function is evaluated only once to obtain the template and can Performance
be even stored and re-used. Only a few multiplications and one rounding are
necessary for each point. The speed-up compared to brute-force repeated eval-
uation is between two and three orders of magnitude. The accuracy of this ap-
proach can be increased by increasing the resolution of the template function
and by extending its cut-off. Note that the resolution of T does not influence the
performance of the method, but the cut-off does. Generalisation to 2D is straight-
forward.

The procedure outlined above corresponds to the sample-and-hold detection Detection
mode(see Figure 3.1). To achieve a boxcar integration, instead of the template its integ-

ral has to be used, and differences of template function values have to be added
to the spectrum. The iteration procedure has to be modified accordingly.

The boxcar integration does not lose peaks with line widths smaller than ∆ν,
whereas the sample-and-hold procedure does.
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4 Orientations

New in this chapter:

. The first correct computation of weighting factors for orientational grids
(Section 4.2)

. A thorough analysis of homogeneous grid based on correct weighting
factors and general merit figures (Section 4.3)

. A new homogeneous grid with cubic symmetry superior to all others
(Section 4.4.2)

. Adaptive grids advantageous for looping transitions, strong orientation
selection and anticrossings (Section 4.5)

In this chapter we take a close look at the orientational integral and its numer- Outline
ical approximation by a finite sum over a distribution of orientations. In the first
section we describe how integration over all orientations can be limited to cer-
tain regions of the sphere and must be numerically approximated by a weighted
finite sum. In the second we present a procedure to correctly compute the weight-
ing factors for this sum. Before analysing various published homogeneous grids
and a new one in Section 4.4, we take a close look at how to assess the quality
of orientational sets. In the last section we introduce a new class of orientational
distributions which adapt to the spectral functions being modelled.

4.1 Symmetry

Recall that a powder spectrum is an integral function of single orientation spectra Powder
integralover all possible relative orientations between the molecular and the laboratory

frame

S(y) =

∮

s(y, Ω) dΩ =

2π
∫

0

π
∫

0

2π
∫

0

s(y, φ, θ, χ) dφ sin θ dθ dχ . (4.1)

The integration range is a three-dimensional manifold in 4D space and has the
form of a hypersphere with a volume of 8π2.

This integral cannot be solved except for the few cases shown in Section 3.1.1. Approxi-
mationIn the vast majority of cases, the integral can only be numerically evaluated. It is
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approximated by a weighted sum of a finite number N of orientations

S(y) ≈
N

∑
k=1

wks(y, Ωk) =
N

∑
k=1

wks(y, φk, θk, χk) with
N

∑
k=1

wk = 8π2, (4.2)

where wk are weighting factors. The set of orientations together with the weights
is called orientational grid, orientational mesh or spherical code. Each numeric-
ally computed orientation (grid or mesh point, knot) represents some range of
nearby orientations in the full integral. The hypersphere is thus subdivided into
a number of regions with the points Ωk at the centres.

For the multiple integral of Eq. (4.1) there are a host of general methods avail-
able from numerical mathematics, but since in magnetic resonance the integrand
has some special properties, integration methods can be more specific.

In nutation and decoupling experiments, peak positions and amplitudes de-χ integration
pend on all three angles, and Eq. (4.2) has to be applied. But for all other ex-
periments (cw EPR, ENDOR and most pulse EPR experiments), peak positions
depend only on the first two angles φ and θ, so that the integration over the third
affects only the amplitudes. The integral over χ can be factored out. For cw EPR
and ENDOR it is even possible to solve this integral analytically (see Eq. (2.53) on
p. 31). Otherwise, symmetry along this angle can be exploited. It is usually suf-
ficient to integrate from 0 to π. The remaining two-angle surface integral is now
much simpler and runs over the unit sphere in intuitive 3D space. Its numerical
approximation reads1

π
∫

0

2π
∫

0

s(y, φ, θ) dφ sin θ dθ ≈
N

∑
k=1

wks(y, φk, θk) with
N

∑
k=1

wk = 4π . (4.3)

There exist some symmetry properties allowing the simplification of Eq. (4.3).Inversion
symmetry The symmetry group of a Hamiltonian is defined as the set of symmetry opera-

tions which leave the set of eigenvalues of the Hamiltonian invariant. Any EPR
spectrum described by the standard spin Hamiltonian is at least invariant under
inversion of the external magnetic field2

H(B)|u〉 = Eu|u〉 ⇐⇒ H(−B)|u′〉 = Eu|u′〉 . (4.4)

Both Hamiltonians have the same eigenvalues, but different eigenvectors. Since
eigenvalues determine resonance frequencies and fields, they remain unchanged
as well. Transition amplitudes do not change either if B1 is replaced by−B1, since

1 From now on, Ω denotes just the orientation with angles (φ, θ) = (φ, θ, 0).
2 If the interaction operator F is (as usual) invariant under rotation, then F commutes with all

components of the sum of all spin operators T = ∑m Sm + ∑k Ik . A unitary transform with
U = exp(iπTz) leaves F invariant and transforms B0Gz to −B0Gz. Hence F + B0Gz and F − B0Gz
are unitary equivalent.
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Figure 4.1: Stereographic projection onto the xy plane of unique spherical regions (shaded
areas) for all symmetry groups from Table 4.1. A solid border indicates a closed bound-
ary, open boundaries have no border. A dot on the vertex between an open and a
closed border of the region indicates that the vertex belongs to the region. The dashed
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2 ≈ 54.73◦.

the corresponding matrix elements in Eq. (2.50) only change sign. The same res-
ult is obtained if all vectors are inverted. This is equivalent to time reversal, since
both magnetic field and angular momentum vectors involved reverse their direc-
tion when time is reversed. The inversion symmetry implies that it is sufficient
to integrate only one hemisphere in the (φ,θ) subspace, that is, θ runs from 0 to
only π/2 (upper hemisphere).

Often systems exhibit higher symmetry than just the inversion symmetry, and Higher
symmetrythe integration range can be restricted still further to two octants, one octant or

even less. This symmetry depends on the symmetry of and the relative orienta-
tion between the various interaction tensors and matrices. The resulting unique
regions are listed in Table 4.1 and illustrated in Figure 4.1. Conditio sine qua non
is that the intensity is already integrated over χ.

4.2 Weighting factors

Although the importance of using correct weighting factors wk in Eq. (4.3) has
been emphasised by many workers, they are usually derived only from specific
geometric considerations from the grid at hand. The design of grids has been con-
strained by the inability to generally and analytically compute correct weights.
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region vertices (φ, θ) point groups
4 octants (0, 0), (0,π/2), (2π,π/2) Ci
2 octants (0, 0), (0,π/2), (π,π/2) C2h
4/3 octants (0, 0), (0,π/2), (2π/3,π/2) S6
1 octant (0, 0), (0,π/2), (π/2,π/2) D2h, C4h
2/3 octants (0, 0), (0,π/2), (π/3,π/2) C6h, D3d
1/2 octant (0, 0), (0,π/2), (π/4,π/2) D4h
1/3 octant (0, 0), (0,π/2), (π/4,π/4) D6h
2/3 octants (0, 0), (ε,−π/4), (ε,π/4) Th
1/3 octant (0, 0), (ε, 0), (ε,π/4) Oh
1/4 meridian (0, 0), (0,π/2) D∞h
1 point (0, 0) O3

Table 4.1: Unique spherical regions on the surface of the unit sphere for all magnetic sym-
metry groups. See Figure 4.1 for illustration. ε = arctan

√
2.

Figure 4.2: Delaunay triangulation (thin lines) and
Voronoi tessellation (thick lines) of 15 randomly
distributed points (black dots) on the sphere
surface. White dots mark the circumcentres of
the triangles.

Only recently [Wan95, Bak97] have they received a more general mathematical
treatment.

Obviously the correct weighting factor wk of an orientation Ωk is the sphereVoronoi cells
surface region containing all points closer to Ωk than to any other knot. This set
of points is a known geometric entity called the Voronoi cell Vk of Ωk. Ωk is called
the generator of the cell Vk. The distance d between two points is measured by the
length of the circular arc connecting them, explicitly d(x, y) = arccos(xTy). Voro-
noi cells are convex spherical polygons. Their edges are arcs of greater circles and
equidistant from two generator points, their vertices are equidistant from exactly
three generator points. A set of N points generates a Voronoi mesh that divides
the unit sphere surface in N Voronoi cells. For details on Voronoi tessellations see
[Oka00], a very accessible textbook.

The point Ωk in a way represents all points from its Voronoi cell in the numer-Weights are
Voronoi areas ical simulation, and the resulting spectrum has to be added to the total powder
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spectrum using the area of the Voronoi cell as weighting factor. For the unit
sphere, this area is equal to the solid angle covered by the cell.

A second concept is of importance. Given an arbitrary distribution of points, Delaunay
triangulationthe computation of the convex hull1 of this point set in 3D gives the Delaunay tri-

angulation of the grid, where neighbouring points are connected by greater circle
arcs. The Delaunay triangulation is a realisation of the dual graph of the Voronoi
mesh, that is, the number of edges is equal, the number of faces in one graph
corresponds to the number of vertices in the other. Edges of the Delaunay trian-
gulation are perpendicular to edges of the Voronoi tessellation (see Figure 4.2).

The Delaunay triangulation on the sphere surface and the convex hull in 3D are
only identical if there is no set of four points lying in one plane. In this case the
convex hull contains a face with four vertices which, however, can be subdivided
into two triangles.

The N-point Voronoi tessellation of the sphere surface is a simply connected Number
of edgesgraph, meaning that edges do not cross. For such a graph we can apply Euler’s

formula
V + F− E = 2 , (4.5)

where V is the number of vertices, F the number of faces and E the number of
edges. Now every vertex is the junction of three edges, and each edge has 2
vertices, so 2E = 3V. With the number of faces (cells) F = N we get the number
of edges E = 3N − 6 and the number of vertices V = 2N − 4. From this the
average number of edges per Voronoi cell is

〈n〉 =
2(3N − 6)

N
= 6− 12

N
. (4.6)

Thus a cell will have six edges on average, but some might have five. The above
formula is only valid for a tessellation of the entire sphere surface. For smaller
regions the number of points on the border have to be taken into account.

For a given point Ω, the Voronoi cell boundary is the polygon that connects all Voronoi
verticescircumcentres of all triangles of which Ω is a vertex [Aug85] (see Figure 4.2). The

circumcentres of a triangle ABC is

xcc(ABC) =
[x(B)− x(A)]⊗ [x(C)− x(A)]

|[x(B)− x(A)]⊗ [x(C)− x(A)]| (4.7)

if A, B and C are arranged in counterclockwise order as seen from outside the
sphere.

It is relatively easy to compute these Voronoi weights. Bak’s and Nielsen’s Voronoi
areasapproach [Bak97] is incorrect, since their procedure gives non-convex polygons

rather than Voronoi cells. To obtain its area, one has to subdivide a Voronoi cell

1 This is a standard algorithm in computational geometry [Bar96]. See any textbook for details, e.g.
[dB97]
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Figure 4.3: Voronoi cell areas. (a) A Voronoi cell consists of several spherical triangles each
containing the generator point as vertex. (b) A spherical triangle confined by greater
circle arcs.
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into triangles ΩAB, where A and B are two adjacent cell vertices (see Figure 4.3),
and add the areas of the triangles

wk = ∑
triangle r with

vertex Ωk

Sr . (4.8)

A triangle with the edge lengths a, b and c has the area S (formula of l’Huilier
[Sig77]) with

tan
(

1
4

S
)

=

√

tan
( s

2

)

tan
(

s− a
2

)

tan
(

s− b
2

)

tan
(

s− c
2

)

(4.9)

and the perimeter half s = (a + b + c)/2.
If less than the full sphere surface is used for the powder integration, the pro-

cedure for computing the weights is the same except that at the borders of the
unique region (see Figure 4.1) Voronoi cells have to be truncated.

The symmetry case D∞h does not have to be handled by the general conceptsAxial case
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above, because the integration is limited to a quarter of a meridian line (see Figure
4.1). The spectrum of a given orientation Ω = (φ, θ) on this meridian segment is
equal to the spectrum at (0, θ). Therefore the “Voronoi cell” of Ωk is a spherical
zone with the centre ring φ = 0 . . . 2π and θ = θk. The boundaries of these zones
halve the distances between Ωk and its two neighbours Ωk−1 and Ωk+1. The
solid angle covered is

wk = 2π
(

cos
θk−1 + θk

2
− cos

θk + θk+1
2

)

. (4.10)

If the distance between the grid points is constant (θk+1− θk = ∆θ), this simplifies
to

wk = 4π sin
∆θ

2
sin θk . (4.11)

The points at the end of the segment need special treatment. For them the weight-
ing factors are

w(θ = 0) = 2π
(

1− cos
∆θ

2

)

and w(θ = π/2) = 2π sin
∆θ

2
. (4.12)

Thus, the assumption used by many authors that the weighting factor is ∝ sin θk
(deduced from the factor in Eq. (4.1)) is wrong for these two points.

4.3 Quality measures

There are many published orientation sets that claim to be efficient. There has Minimal
simulation
error

been much research into which the optimal point distribution is. Obviously the
ideal grid is the distribution of N points that generates the spectrum with the
smallest simulation error. This will heavily depend on the spectrum simulated.
Since, however, in a general simulation algorithm neither the spectral functions
nor their symmetries are known in advance, such optimal grids might perform
well for a certain class of spectra and very badly for another one. They cannot be
designed in advance without knowledge of some properties of the system to be
modelled.

Consequently, a “one-fits-all” grid has to be used, being better for some spectra
and suboptimal for others. There are several different criteria along which such
grids are usually designed. Since spectral functions can have any orientation and
any shape, all resulting grids are quite homogeneous.

One could take the convergence rate (with respect to N) to the theoretical spec- Convergence
ratetrum as a quality measure, as has been done [Pon99a]. As error function Eq. (3.18)

(p. 63) is used. As long as correct weighting factors are used, any summation will
sooner or later converge. Different parts of a spectrum can converge at differ-
ent rates. The main problem, however, is that any analysis will depend on some
sample spectrum.
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There is a class of grids that are designed in a way that the average over allQuadrature
grids knots of the grid of a spherical harmonic or other polynomial up to a certain

degree t is equal to its total integral over the sphere. All wk are equal. Such quad-
rature grids have been used extensively for numerical integrations. Recently they
have been applied in magnetic resonance as well [Edé98]. The approach assumes
that any spectral function is reasonably approximated by a truncated series of
spherical harmonics. This is not the case in EPR (e.g. for looping transitions), so
the concept is of limited utility.

Another at first sight sensible criterion to define the quality of a grid is the ro-Rotational
invariance tational invariance of the simulation error [Bak97, Pon99a]. The invariance will

however depend on the spectral functions and their symmetry. A rotationally
invariant grid ideally gives a simulation error independent of the relative orient-
ation between the M frame of the spin system and the grid. But if there is an
alignment between grid and molecular frame that gives results better than an
arbitrary alignment, why not use it? In EPR, best results are usually obtained
by aligning the grid with the strongest interaction tensor or matrix. For this the
grid must have at least a rotation axis and will not be rotationally invariant. In
addition, rotational invariance can only be assessed by the study of a sample
spectrum.

All the criteria listed above boil down to the requirement that the grid shouldHomogeneity
be “as homogeneous or uniform as possible”, a quantity now independent of any
simulated spectrum. A certain degree of homogeneity helps to avoid overdoing
spectral features stemming from certain orientations compared to others. There
have been some attempts to quantify this homogeneity. Ponti [Pon99a] has used
approximate weighting factors, other workers have correctly realised the import-
ance of Voronoi cells [Bak97], but have computed the areas in the wrong way.

After a detailed study, the following three measures have turned out most use-
ful in quantifying the uniformness of an orientational grid.

The first and most obvious one is the distribution of the areas Ak of the Voronoi(1) Voronoi
area

distribution
cells. This distribution is characterised by a mean µ(A) and a standard deviation
σ(A). For a given number of knots N, µ(A) will be identical for all grids

µ(A) = 〈A〉 =
1
N

N

∑
k=1

Ak =
4π
N

. (4.13)

On the other hand, the standard deviation

σ(A) =
√

〈A2〉 − 〈A〉2 =

√

1
N ∑

k
A2

k − µ2(A) (4.14)

depends on the particular arrangement of points, being zero at best. Thus we can
use the relative standard deviation

σr(A) =
σ(A)

µ(A)
=

√

√

√

√

N
16π2

N

∑
k=1

A2
k − 1 (4.15)
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as a figure of merit. The areas are computed with the formulas given in the pre-
vious section. The smaller σr, the more homogenous is the grid.

As a second optimality criterion we define a measure that describes the devi- (2) Cell shape
distortionation of a Voronoi cell’s shape from the spherical cap with the same surface area.

For a spherical cap the perimeter U = 2π
√

h(2− h) can be expressed in terms of
its surface area A = 2πh by

U =
√

A(4π− A) . (4.16)

From this it follows that the parameter

α =
U

√

A(4π− A)
− 1 (4.17)

is zero for spherical caps of all sizes and can be used to quantify the shape dis-
tortion. For a Voronoi cell, α is always larger than zero. U is the sum of the arc
lengths of the edges, and A is the area obtainable from Eq. (4.8). The mean over
all Voronoi cells

µ(α) =
1
N

N

∑
k=1

U
√

A(4π− A)
− 1 (4.18)

is now an appropriate measure of the average shape distortion. µ(α) is always
larger than zero, and the closer it is to zero, the more spherical the cells are.

Figure 4.5 illustrates the distribution of cell areas and shape parameters for two
different grids.

The third figure of merit is often used as minimisation target. It is the electro- (3) Energy
static potential energy of the grid per point

Ea =
2

(N − 1)2

N−1

∑
k=1

N

∑
l=k+1

d−2
a (Ωk, Ωl) . (4.19)

It is not very critical whether the through-space Euclidean distance dE or the arc
length da is used in this formula, since they are monotonically related

dE = 2(1− cos da) . (4.20)

The numerical values will be different, but the minimum for one energy will be
very close to the minimum for the other one.

The three criteria are independent in the sense that if grid A is better than
grid B according to σr(a), it is not necessarily so when ranked by µ(α) or Ea.
Nevertheless, the rankings of the grids in the next section are similar for the three
measures.

There are several other measures in mathematical literature. They are used as Other criteria
error functions which are minimised. Spherical packings are point sets designed
to maximise the minimal distance between two points. Spherical coverings are
point sets with minimised maximal distance. Some spherical codes are designed
to maximise the volume of the convex hull of the points.
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4.4 Homogeneous grids

4.4.1 Grids currently in use

There have been many suggestions of spherical grids in the last twenty years.
For a rather complete list and for references see the articles by Ponti [Pon99a]
and by Bak and Nielsen [Bak97]. Grids can be classified either by their construc-
tion method or by their symmetry group. Constructively, grids are grouped into
analytical (both orthogonal and non-orthogonal), randomly generated and optim-
ised grids. In the following we briefly describe the most commonly used ones.

The uniform random (Monte Carlo) grid (see Figure 4.6) is the worst one canMonte Carlo
method possibly think of. To obtain a uniform random distribution over the unit sphere,

uniform random distributions in the interval [−1, 1] for cos θ and in the interval
[0, 2π) for φ are used. The resulting orientational distribution is uniform on the
sphere surface, because the projection from the sphere surface to (cos θ, φ) is area-
preserving. This means that the uniform knot density in the (cos θ, φ) maps to a
uniform knot density on the sphere surface. Of course, the distribution will be
uniform only in the limit of infinitely many knots (N → ∞). All quality figures
for random grids are very bad, no matter which. In essence, using a Monte Carlo
grid is a waste of time. Monte Carlo simulations for orientational integration
have indeed been reported rarely [Gal81], but are often taken as reference for
the performance of other grids instead of the exact powder shape formulas from
Section 3.1.1. The weighting factors are usually assumed to be identical for all
points wi = 4π/N, but since a distribution is uniform only in the infinite limit,
inclusion of Voronoi area weights is recommended. It can reduce the error by up
to a factor of 10.

There are a number of grids based on quasi-random (deterministic) generatorsQuasi-random
grids like the Sobol’ algorithm [Pre92]. They are widely used in many fields except

magnetic resonance. They are much better than the Monte-Carlo grid, but still
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rectangular sinusoidal igloo
266 points 266 points 248 points

Monte Carlo Sobol’-Antonov-Saleev spiral
258 points 258 points 258 points

octahedral SOPHE EasySpin
258 points 258 points 258 points

repulsive
258 points

Figure 4.6: Spherical grids with knots and Voronoi cells over the upper hemisphere for
approx. 258 points.
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worse than any other systematic grid. They construct a uniform grid, which is
refined in cycles. Their main advantage is that they can be used in simulations
where the number of points is increased in successive steps of grid refinement
without clustering effects as would appear using a Monte Carlo grid. For com-
parison we include here one of these methods by Sobol’, Antonov and Saleev
[Pon99a] (see Figure 4.6).

Next in inefficiency comes the grid which is the easiest to implement. Distribu-Orthogonal
grids tions of points along θ and φ are used to construct a rectangular grid (see Figure

4.6). If linear distributions along θ and φ are used [vV78, Gri90], the resulting knot
density on the sphere is far from uniform, since it crowds in the pole regions. The
areas of Voronoi cells close to the poles are much smaller than those around the
equator. Even if the correct weights are included in a simulation, much perform-
ance is lost due to the unbalanced emphasis of the poles. If linear distributions of
cos θ and φ are used instead [Ebe83] (sinusoidal grid), Voronoi cell areas are more
narrowly distributed (note the outlier at the pole, see Figure 4.6), but their shapes
are very far from spherical, so that this grid is already visually counterintuitive.
Orthogonal grids have rotational symmetry around the z axis.

The first analytically constructed non-orthogonal grid published [Nil79] stepsIgloo grid
θ in constant intervals and adjusts the number of points on the latitude circle
θ = const to its length

θi =
i

N − 1
π 0 ≤ i ≤ N − 1

φij =
j

Mi
2π 0 ≤ j ≤ Mi − 1 Mi = b4(N − 1) sin θic . (4.21)

With increasing distance from the pole, an increasing number of points is placed
on the latitude circles (see Figure 4.6). This grid is commonly referred to as igloo
grid [Nil79, Pil90], although igloos usually are constructed in a spiral form.

Alderman et al. [Ald86] have proposed a scheme where a triangulation of theOctahedral
dome faces of a octahedron is projected onto the sphere enclosing the octahedron. The

triangle vertices define the knots of the grid. In geometry and architecture the res-
ulting sphere triangulation is known as a geodesic dome1. Here the knot density
is again inhomogeneous, now being inappropriately dense on all six poles, that
is, where the x, y and z axes cut the sphere. The knots are confined to certain
latitude circles, but they are not equidistant as in the igloo grid. The Alderman
grid has octahedral symmetry.

A closely related triangular grid was introduced by Wang et al. [Wan95]. ItsSOPHE

1 The concept (based on a icosahedron) was developed and patented by US architect R. Buckminster
Fuller after WW II, but Walter Bauersfeld at Carl Zeiss optical works in Jena had already construc-
ted a planetarium in 1922 using the same structure.
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grid points are given in an explicit form (here defined for one octant)

θk,l =
k
M
π

2
0 ≤ k ≤ M

φk,l =
l
k
π

2
0 ≤ l ≤ k (4.22)

giving N = M(M + 1)/2 knots (see Figure 4.6). This so-called SOPHE grid has
D4h symmetry. The weights can be computed analytically, and their distribution
is much narrower than that of the Alderman grid. The SOPHE grid is particularly
suited for interpolation.

The spiral or “apple peal” grid consists of a chain of N points spiralling up Spiral grid
from the equator θ = π/2 to the north pole θ = 0 with constant distance from
each other and constant distance to the adjacent turns of the spiral. When it was
first introduced in EPR [Mom92], optimisation on a set of nonlinear equations
was used to obtain the locations of the knot points. There is, however, a simple
closed form for this grid [Pon99a]

tn =
n

N − 1
θn = arccos tn ∆ =

√

2π(N − 1) φn = ∆ arcsin tn , (4.23)

where n runs from 0 to N − 1. The distance measure (θk − θk−1)/(φk − φk−1)
between two consecutive points k and k− 1 is constant, whereas the distance on
the sphere surface between them decreases slightly towards the pole (see Figure
4.6). The spiral grid is only applicable for Ci symmetry. A very similar grid with
two spirals has recently been presented [Gra01].

The grid introduced by to Conroy and Wolfsberg [Koo95] is constructed with Modulo grid
analytical expressions containing the modulo function. Graphically, it gives a
point distribution where more than one spiral is winding up from one pole to
the other. It depends not only on N, but on two more parameters. Their optimal
values depend strongly on N and have to be tabulated for practical use. This
makes the grid a bit unwieldy in simulations where N can be any number.

A class of spherical grids considered to be optimal are energy-minimising grids. Repulsion
gridTheir knot distributions are results of dynamic simulations trying to find local or

better global energy minima of an electron distribution with the electrons placed
at the knot positions on the sphere surface (see Eq. (4.19)). Fittings take quite
some time, so that such grids are preferably pre-computed and stored for EPR
simulations. For large numbers of knots, the convergence to a minimum is very
slow, limiting their applicability to N < 1000. There has been extensive research
into these kinds of grids. In magnetic resonance they first were applied by Bak
[Bak97], with an upper limit of 999 for N. Repulsion grids have C1 symmetry.
They are not suited for interpolation.

Other minimisation grids have already been mentioned in Section 4.3. They
have never been applied to spectral simulations in magnetic resonance. They
have the same disadvantages as the minimal-energy grids.
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Figure 4.7: Merit figures for all grids. (a) Voronoi cell area distributions, (b) Delaunay
triangle area distribution, (c) Coulomb energy. Abbreviations: r rectangular, si sinus-
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Symmetry Spherical grid
Th Alderman, EasySpin
Dnh orthogonal, sinusoidal
D4h SOPHE
Ci spiral, igloo
C1 Monte Carlo, repulsion, Sobol’-Antonov-Saleev

Table 4.2: Spherical grids classified by their symmetry
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Figure 4.9: Construction of the mean triangular EasySpin grid with octahedral symmetry
from three axial triangular grids with different orientations.

4.4.2 A new grid

The Alderman and the triangular SOPHE grid are the only non-orthogonal grids High
symmetry
grids

that have a symmetry higher than Ci. Points line up at the borders of the octants,
i.e. in the xy, yz and xz planes. This makes them particularly suited for simula-
tion of systems with symmetry planes falling on these octant borders. Since in
EPR and ENDOR significant spectral features usually appear at the poles or/and
equators of the associated symmetry group, both grids guarantee their inclusion
into the spectrum. The Alderman grid is much more inhomogeneous than the
SOPHE grid, therefore the latter is currently the best choice.

The SOPHE grid is, however, not optimal by the merit figures defined above.
Points not falling on octant borders tend towards the equator, especially the point
at (π/4, 2∆θ) (see Figure 4.6), causing a considerable deviation from the average
of the Voronoi cell and triangle areas around the pole.

A new grid with cubic (Th) symmetry can be constructed by averaging three EasySpin
gridSOPHE grids constructed around the x, the y and the z axis, respectively, as illus-

trated in Figure 4.9. The resulting point distribution is much more uniform, since
a three-fold rotational axis along (±1,±1, 1)T passes through each octant.

103



4 Orientations

Explicit formulas for the points of the new EasySpin1 grid are too clumsy. TheConstruction
following compact procedure can be used instead. In one octant, the point with
indices A = (k, l) as defined for the SOPHE grid (Eq. (4.22)) is symmetrically
related to the points B = (M− l, k− l) and C = (M− k + l, M− k). The point A′ of
the new grid is symmetrised using A, B rotated by 2π/3, and C rotated by−2π/3
around the axis (1, 1, 1)T, which just means cycling the Cartesian coordinates




xA′

yA′

zA′



 ∝





xA
yA
zA



+





yB
zB
xB



+





zC
xC
yC



 with





x
y
z



 =





sin θ cos φ
sin θ sin φ

cos θ



 . (4.24)

The angles θ and φ for the three SOPHE points are explicitly
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k runs from 0 to M, and l runs from 0 to k. Practically one starts from a SOPHE
grid and evaluates Eq. (4.24). The extension to more than one octant is trivial.

The EasySpin grid combines the octahedral symmetry of Alderman’s grid withAdvantages
the simplicity and homogeneity of the SOPHE grid. The new grid is very similar
to an energy-optimised grid with the same number of points, where all points on
octant borders are held constant. The maximum deviation of the grid points in
Figure 4.9 from those of the corresponding constrained energy-minimal grid is a
mere 0.2◦, whereas the SOPHE grid is 5.3◦ off.

4.4.3 Comparison

In Figure 4.7 all grids are compared based on the three criteria defined in SectionTwo groups
4.3. The first league with respect to weight homogeneity is formed by the igloo,
spiral, energy-minimal and EasySpin grids. The homogeneity of all other grids
is significantly worse for N > 200, the SOPHE grid being the best among them.
According to mean shape deviation, grids clearly fall into two categories, with
the Alderman and the SOPHE grid joining the first league. The energies of the
various grids are very similar, only the Monte-Carlo and the rectangular grid lie
significantly higher than the average.

In a two-dimensional comparison (Figure 4.8) the quality difference betweenEasySpin is
best energy-minimal, EasySpin, spiral and igloo grids and all others becomes quite

clear. Which of the four should now be preferred? The spiral grid is the only one
which cannot be used on spherical regions less than one hemisphere (see Section
4.1). In contrast to the EasySpin grid, both energy-minimal and spiral grids are
so irregular that interpolation is difficult. In addition, both have low symmetry,

1 We name this new grid after the EPR software package written by the author, in which it was first
implemented (see Chapter 5).
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Figure 4.10: Pathological cases for homogeneous grids (schematic). (a) A looping trans-
ition, (b) amplitude in a strongly orientation-selective experiment, (c) steep transition
amplitude dependence caused by an anticrossing.

whereas the EasySpin grid is cubic. Consequently, the EasySpin grid is the most
suited for our purposes.

4.5 Adaptive grids

All the more or less uniform grids presented so far are designed to the basic
dogma “equal size, equal shape”. The best of them work generally very well,
since most orientation-dependent quantities such as resonance fields, ENDOR
and ESEEM frequencies, transition amplitudes, coherence transfer amplitudes
and anisotropic line widths, are typically very smooth and do not change very
much with Ω.

There are, however, situations where the schemes presented above fail to pro- Pathological
casesduce correct results or perform very badly. In three cases functions can be more

involved (see Figure 4.10). In cw EPR, looping transitions result in resonance
field surfaces defined only over a part of the orientational sphere. In spectro-
scopic methods where the excitation range is much narrower than the total spec-
tral width due to anisotropic interactions, amplitude functions are nonzero for
only small mostly banded regions. ENDOR and pulse EPR and indeed all fixed-
field fixed-microwave experiments belong to this category. Last not least, an-
ticrossings of states and their energies cause transition and coherence transfer
amplitudes to become significantly nonzero only for a part of the orientational
sphere, falling with rather steep roll-offs to zero for the rest of the sphere. Anti-
crossings are quite common.

These three special situations are usually handled by increasing the grid dens-
ity to model even the steepest occurring function change accurately. This guar-
antees that all features in the spectrum are correct, but eats into performance. A
typical orientation-selective ENDOR experiment excites only about 10% of all ori-
entations. Computing these at an acceptable accuracy with a homogeneous grid
means that the time to compute the non-contributing 90% of the orientations is
wasted. Demands on computer memory and speed are higher than necessary.
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The obvious answer to the problem is along the lines of Section 2.2.2 and Sec-Adaptive
grids tion 2.8.2. Grids should be used that adapt to the strongly varying function, being

as fine as necessary and as coarse as possible to model the function accurately.
Such adaptive meshes are industry standard for solving differential equations
in Euclidean space with FEM (finite element methods). In magnetic resonance
simulations, adaptive grids have not been considered so far1.

The closest the literature gets to them is in the form of a uniform binary re-
finement of the grid for an axial system. In each simulation cycle, the number
of points is doubled and the spectrum for the new ones computed [Net85]. In
this way, the resolution of the homogeneous grid is uniformly increased, until
the resolution of the resulting spectrum is satisfactory. Sobol’-Antonov-Saleev
grids were developed specifically for this purpose, but have not been applied in
magnetic resonance [Pon99a].

4.5.1 Principles

When computing a powder spectrum over one of the homogeneous grids from
the last section, peak positions and amplitudes are assumed to be smooth. It is
impossible to know in advance whether one of the special situations discussed
above will surface2. This can only be assessed by looking at already computed
data. So the basic procedure needs to pre-compute peaks over a coarse orienta-
tional grid before it is possible to decide where and how to refine the grid.

Since the computation of peak amplitudes and peak positions for an orient-Keep old data
ation is a quite time-consuming step, peak data of already computed orienta-
tions are not discarded. These data are used to determine whether and where to
place new knots and are included in the final spectrum. Thus the adaptive mesh
method introduced here does not move mesh points and adapt a given number
of them to the function so as to yield the spectrum with the smallest simulation
error. It is adaptive in the sense that the resolution of the grid is locally adapted
to the behaviour of the function, thus keeping the number of orientations needed
for a certain accuracy at a minimum.

As starting set a homogeneous grid (preferably the EasySpin grid) of accept-Recursive
subdivision able resolution is needed. Once all its peak data are computed, it is easy to test

for each Delaunay triangle whether it is resolved enough or not. If not, it is sub-
divided into four triangles by placing new knots on the midpoints of the edges
(see Figure 4.11(a)). Spectral data are then computed for the three new points,
and the four subtriangles are tested again for smoothness. This subdivision pro-
cedure is recursively repeated until the peak data are smooth enough over all
triangles, a maximum number of orientations is exceeded or a certain number of
subdivisions have been completed.

1 The concept of adaptive interpolation presented in [Pon99b] is a somewhat unfortunate term, since
the interpolation is linear and not adaptive.

2 There is an exception: Looping transitions in cw EPR can be excluded if the spectrometer frequency
is greater than the total zero splitting, see Eq. (2.33), p. 22.
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Figure 4.11: (a) Quadrisection of a spherical triangle by inserting three new knots. (b)
Conversion of a refined grid from closed to open form.

Although triangle quadrisection halves the edges of a spherical triangle, the Mesh
propertiesresulting four new triangles do not have equal area. In addition, the subdivided

triangle is locally re-triangulated according to Figure 4.11(a), but its neighbours
now have knots at their edge centres. Obviously, the new grid is not a Delaunay
grid anymore. It would be possible to re-triangulate the entire grid, but this is
not necessary, as we will see.

The adapted grid will vary widely in local resolution. Correct weighting fac- Weighting
factorstors are now absolutely crucial to obtain reasonable results. Once again we have

to distinguish between projective (Section 3.1.4) and additive (Section 3.2.3) spec-
trum construction methods. For projective methods the spectrum of a triangle is
weighted by its area. Since we are still dealing with triangles, these techniques
can be applied to adaptive grids without any modification.

For additive methods the situation is more complicated. Voronoi cell areas are Triangle
centresonly obtainable from a re-triangulation of the mesh. But there is a much simpler

procedure, as illustrated in Figure 4.11(b). For each triangle (for those that re-
mained untouched by the refinement as well), take the average of the peak data
over the three vertices and add the peak to the spectrum. As weight the area of
the triangle can be used. The averaging of the peak data amounts to the conver-
sion of a closed grid to an open grid, as classified by Ponti [Pon99a]. The principal
direction of the g frame, along which the grid is aligned, are averaged away. In
ESEEM this is of no relevance, since the corresponding peak amplitudes are very
small. For cw EPR spectra with looping transitions and small line widths, this
effect can slightly deteriorate accuracy at turning points. If looping transitions
are present, the interactions are usually so complex that these turning points do
not occur at g principal directions.

Before we discuss the refinement criteria used to decide whether to subdivide Axial spectra
triangles for the various situations, we look at the axial case. Two knots on the
meridian define a spherical zone (see Figure 4.4 on p. 94). The refinement de-
cision for the zone depends on the peak data of those two knots, and the zone
is refined by placing a new knot at the centre of the corresponding meridian seg-
ment. For both projective and additive spectrum construction, Eq. (4.10) is used
to compute the weights. For additive spectrum construction the grid is converted
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Figure 4.12: (a) Excitation profile for ENDOR or pulse EPR for an orthorhombic system
and (b) the associated adapted grid. Σmax = 15.

to open form as in the orthorhombic case by averaging data of two neighbouring
orientations.

4.5.2 Refinement criteria

Now let us have a look at the adequate tests for deciding on a possible triangle
refinement. For a given orientation triangle, all transitions (or a cumulative func-
tion) have to be examined, and even if the test results positive for one peak only,
the triangle has to be subdivided. So the division decision goes after the worst
behaving peak.

Orientation selection

Strong orientation selection occurs if the experimental excitation bandwidth ∆excSelectivity
(usually ΓFWHH or something similar) is much smaller than the spectral EPR
spread ∆Eepr(Ω), that is, the difference between the highest and lowest EPR trans-
ition frequencies. We define the selectivity Σ as

Σ(Ω) =
∆Eepr(Ω)

∆exc
. (4.26)

The EPR spectral spread and consequently the selectivity depends on the orient-
ation of the spin system in the spectrometer. For a typical pulse ENDOR experi-
ment on a Cu2+ complex this varies between 2 and 15. The selectivity depends
on the magnetic field, so that at W-band the maximum selectivity is Σ ≈ 150. The
higher Σ, the less orientations are excited. For the adaptive grid we must assume
the worst case and use the maximum selectivity Σmax. It can be estimated by
computing the EPR spectral spread at a few selected orientations.

Orientation selection occurs in ENDOR and pulse EPR experiments. In bothExcitation
intensity experiments the intensity depends on how much EPR transitions are excited. The
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Figure 4.13: Orientation-selective experiment on a Cu2+ system (diagg = (2, 2, 2.3),
diagA = (50, 50, 500) MHz) at X-band (9.797 GHz). ∆exc = 50 MHz. (a) EPR reson-
ance fields in dependence of θ, (b) EPR powder spectrum, (c) EPR excitation function
in dependence of θ and the magnetic field, (d) fraction of orientations computed in the
adaptive grid method compared to a full resolution homogeneous grid.
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EPR excitation intensity function (see Eq. (2.60) on p. 33)

I = ∑
u,v

∑
q

fG(Eq − Eu, ν, Γmw)〈q|Gx|u〉 (4.27)

is thus appropriate as control parameter. For fully excited powder spectra and
low selectivity it varies within a small range, but for Σ > 100 it may change by
several orders of magnitude over the orientational sphere.

Therefore the first step in the simulation is the computation of peak data over aProcedure
homogeneous grid fine enough to hit at least once the small region of excitation.
For this, knots must have a distance not more than π

2 /Σmax. If the EasySpin
or SOPHE grid is used, M = dπ2 /Σmaxe. Then the maximum Imax of I over
all computed orientations is determined. A triangle with vertex intensities I3 ≥
I2 ≥ I1 is subdivided if its maximum I3 is above αImax (α ≈ 0.001) and the relative
intensity change over the triangle is larger than a certain threshold

I3 − I1

Imax
> β (4.28)

with β ≈ 0.05. The EPR excitation function and the resulting adapted grid for a
simple S = 1/2 orthorhombic system is shown in Figure 4.12. More details can
be seen in an axial Cu2+ example in Figure 4.13. The reduction in computation
time can be inferred from Figure 4.13(d).

The use of adaptive grid refinement already helps to avoid a large number ofThresholds
orientations which would be computed on a fine homogeneous grid, but do not
significantly contribute to the final spectrum. But even in the adaptive procedure,
many of the knots of the uniform starting grid might not contribute. And some
of the subdivided triangles might as well have become insignificant during the
grid refinement process according to Eq. (4.28), since Imax changes during the
refinement. All these orientations can be removed before spectral construction
by testing whether A(I1 + I2 + I3) (A is the triangle area) falls below a suitably
chosen threshold.

Looping transitions

In the case of looping transitions one first checks whether there are orientationsNumber of
eigenfields with more than one resonance field per transition. If not, adaptive refinement is

not necessary and can be either skipped or applied to all triangles. If yes, each
triangle has to be tested whether it lies on the boundary of a looping transition.
The test parameter is the number of resonance fields nB for the triangle vertices.
If all three vertices have the same number of resonance fields, no subdivision
is necessary. If the numbers of resonance fields at the vertices are not all equal
(e.g. 12 for two vertices and 10 for the third), a transition loops within the triangle
area, and the triangle has to be subdivided. Hence

divide if not nB(Ω1) = nB(Ω2) = nB(Ω3) . (4.29)
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Figure 4.14: (a) An adaptively refined mesh for a looping transition (2 subdivisions). M
is the resolution of the starting grid. Small insert: Regions with constant total number
of transitions. (b) Effect of adaptive mesh refinement on the spectrum of the looping
transition in (a), as a function of the number of subdivisions d. The exact spectrum is
printed with a thin line for comparison.

nB is the total number of resonance fields for Ω. It is not necessary to check each
transition separately, since the triangle has to be subdivided even if only one
transition loops in the triangle region.

Figure 4.14(a) illustrates the mesh refinement for a looping transition. Here the Example
subdivisions were stopped after three iterations. The border of the looping trans-
ition is nicely modelled. A series of simulated spectra in Figure 4.14(b) shows
that the attained improvement in the centre of the spectrum is significant for the
first few subdivision iterations (d = 1 or 2), but flattens out as the quadrisections
are continued. Convergence to the correct spectrum is very slow as d is increased.
More crucial than a lot of subdivisions is the density of the starting grid. It not
only should be dense enough to reproduce ordinary transitions, but should also
model accurately looping transitions which sometimes occupy only a small frac-
tion of the orientational sphere. For the adaptive refinement at the borders, two
steps are then sufficient.

Anticrossings

The steep intensity changes due to anticrossings as pictured in Figure 4.10 (p. 105)
need only be closer modelled if interpolation is used. Interpolating on a too
coarse grid leads to errors in the spectrum, since the steep roll-off is not reli-
ably modelled. Monotony-conserving interpolation (see Section 2.7) has to be
used. For the adaptive grid refinement, the criterion of Eq. (4.28) can be directly
applied.
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4.5.3 Outlook

The adaptive mesh refinement introduced here is still one step short of com-
pletely adaptive meshes, as applied in other areas of science and engineering.
There, adaptive meshing is confined to geometric objects. The main obstacle for
fully adaptive grid application in EPR is the cost of computation of peak data and
the fact that for any orientation the grid must be reasonably adapted not only to
one scalar function, but for the resonance surfaces and transition amplitudes of
many transitions.

It may, however, be possible to elaborate on the rudimentary but very yielding
ideas introduced here. New knots could not only be placed at the edge centres,
but anywhere on the edges depending on the data at the vertices. Triangles might
be subdivided into 9 or 16 triangles. Still, all these methods would need to ad-
apt the mesh not to only one resonance surface, but on the worst-behaved of a
sometimes rather inhomogeneous set.
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New in this chapter:

. A software package for computation of powder cw EPR, ENDOR and
pulse EPR spectra

All concepts and algorithms presented in the previous chapters have been im- EasySpin
plemented, tested and analysed using Matlab1, a numerical mathematics pack-
age with its own programming language and visualisation facilities. The most
efficient methods from the previous chapters have been incorporated in a ready-
to-use Matlab function collection called EasySpin, which is freely available over
the Internet including extensive documentation.

The numerical functionality of Matlab covers vector and matrix arithmetics, ei- Matlab and C
genproblems, special functions, optimisation, interpolation and much more. Al-
though Matlab is an interpretative language and Matlab code consequently runs
not as fast as compiled programs from Fortran or C source code, it is convenient
because of its interactivity and consequently the best choice for the prototyping of
new algorithms. Another advantage of Matlab is the possibility to conveniently
integrate spectral simulations, data analysis, fitting and visualisation.

On the other hand, finalised simulation algorithms are best implemented in a
compiled language such as C, where computations can run up to 50 times faster
due to reduced overheads. There exist special C libraries for spin physics, the
most extensive being the C class libraries Γ [Smi94] and BlochLib [Bla02]. But
much of their functionality is not needed in EPR. In addition, many algorithms
introduced in this PhD thesis operate on scalars or vectors and not on higher-level
objects such as operators and tensors. The only spin physical operations needed
are eigenproblem solutions and matrix exponentiation, which are readily avail-
able on any numerical platform. Although the C libraries mentioned provide an
easy and very convenient interface for performing time-domain pulse EPR simu-
lations [Sha98, Mád02], their classes are not suited for the implementation of the
frequency-domain approach described in Section 2.5.

The core algorithms of EPR spectral simulations are very simple (the projection Core in C
methods of Section 3.1.4, the scaled copying of Section 3.3.2, the convolution ap-
proximation of Section 3.2.3), but very time-consuming. Most of the time needed

1 Matlab is produced by The Mathworks, Inc., Natick, MA, USA, http://www.mathworks.com.

113



5 EasySpin

PSfrag replacements
simulation functions

utility functions

service functions

pepper, salt and safran

sop, erot, nucdata, levels, etc.

lipro21c, lipro11c, binfirc, etc.

Figure 5.1: Three categories of functions in EasySpin.

for simulation of a powder EPR spectrum is spent on them. To improve per-
formance, their final versions have been incorporated into EasySpin as library
functions written in C (so-called mex files) to improve the overall performance.

Therefore, EasySpin is a Matlab toolbox with a very efficient C kernel. Powder
simulations spend more than 90% of the time either in highly speed-optimised
Matlab built-in functions or in the EasySpin kernel functions written in C. Con-
verting the entire toolbox to C is not necessary, since the gain in performance
would be marginal.

In the following we briefly describe the EasySpin toolbox. More details can
be found in the manual, in the examples accompanying the software and in the
source code documentation.

5.1 General concept

EasySpin is a collection of functions. They fall into three distinct categories, as
illustrated in Figure 5.1.

Most algorithms are implemented in private service functions not directly avail-Service
functions able to the user. They include lipro21c and lipro11c for non-axial and axial

projections (Section 3.1.4), lisum1c for scaled copying (Section 3.3.2), binidxc
for histogram binning (Section 3.2.2) and the function binfirc for the convolu-
tion method of Section 3.2.3. There are also several interpolation functions in this
group.

For interactive use, more than 50 utility functions providing elementary spinUtility
functions physics functionality are included. sop computes spin operators for any set of

spins. erot and eulang convert between Euler angles and the associated rota-
tion matrices. levels computes energy levels for a given set of orientations and
magnetic fields. nucdata, nucgval and nucspin contain a database of nuclear
spin quantum numbers and gn values. pseumod implements the procedure of
pseudo-modulation discussed on p. 60. lshape, gaussian and lorentzian
provide line shapes and their derivatives. rcfilt performs the RC filtering of
Eq. (3.4). eigfields, resfields and endorfrq compute resonance fields, res-
onance frequencies and transition intensities for cw EPR and ENDOR. Various
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utilities for data analysis such as ctafft for cross-term averaged FFT [Van99]
are provided, as well as apodization windows and other filters.

The third layer of functionality is provided by the simulation functions pepper, Simulation
functionssalt and safran. They compute powder spectra for cw EPR, ENDOR and

pulse EPR, respectively. They are built on service and on utility functions and
are by far the most complex in the toolbox.

5.2 Spectral simulations

The powder spectrum computations performed by pepper, salt and safran Syntax
work according to the scheme outlined in Section 1.1.2. The calling syntax for
them is similar

[FieldAxis,Spectrum] = pepper(System,Params,Options) % cw EPR
[rfAxis,Spectrum] = salt(System,Params,Options) % ENDOR
[ftAxis,Spectrum] = safran(System,Params,Options) % pulse EPR

The output contains the abscissa vector(s) and the spectral data vector or mat- Output and
inputrix. The input is organised in three structures. System collects all parameters of

the spin system such as the number and quantum numbers of the spins and the
parameters in Section 1.2. In addition, it contains strain values and line width
parameters (Section 1.3 and Section 2.3). Params specifies the experimental para-
meters, such as the sweep range of the magnetic field or the radio frequency, the
temperature, the detection mode (B1 ⊥ B0 or B1‖B0), the excitation width (for
ENDOR), and the pulse sequence in the case of pulse EPR. The Options struc-
ture collects parameters determining the behaviour of the simulation algorithm
such as the resolution of the orientational grid, the interpolation factor and vari-
ous rejection thresholds. Transitions can be selected via an explicit list or an in-
tensity threshold.

With a given System structure, pepper, salt and safran first automatically Symmetry
determine the symmetry group and the symmetry frame of the spin system (see
Section 4.1). The powder spectrum simulation is performed in the frame with the
highest symmetry using the unique orientational regions according to Table 4.1.
All interaction matrices and tensors are rotated into the symmetry frame, where
the spin Hamiltonian is set up.

Next, an orientational grid is set up in the symmetry frame. For axial symmetry, Grid
a quarter of a meridian is used as illustrated in Figure 4.4 on p. 94. For non-axial
symmetries, the triangular EasySpin grid (Section 4.4.2) is used. For cw EPR and
ENDOR spectra, a resolution with M < 20 (see Eq. (4.25) on p. 104) is sufficient.
For pulse EPR, 60 < M < 120 is needed to achieve a smooth powder line shape.
The large resolution is necessary because in pulse EPR the grid serves as inhomo-
geneous distribution for the computation of correct amplitudes as discussed in
Section 2.5.4.

For a small subset of orientations, all spectral peaks are computed. Based on Transition
selection
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the orientational average of the resulting intensity data a list of transitions signi-
ficantly contributing to the final spectrum is compiled (see Section 2.8.1). This
automatic selection process can be configured by the user by specifying a relative
intensity threshold or bypassed by supplying an explicit list of transitions.

For the rest of the orientations, spectral data are computed only for the selectedPeaks
transitions. Peaks are calculated according to the formulas outlined in Chapter 2.
For cw EPR, pepper uses the adaptive bisection approach of Section 2.2.2. For
the ENDOR simulation function salt, the expressions from Section 2.4.1 and
Section 2.4.2 are used. Pulse EPR peaks are computed by safran in frequency
domain using the equations from Section 2.5 and Section 2.6 and the adaptive
thresholding mechanism outlined in Section 2.8.2.

The peak list (see Eq. (1.1) and Eq. (1.2)) thus obtained is interpolated usingInterpolation
global cubic splines for peak positions and linear interpolation for peak amp-
litudes (Section 2.7). If anisotropic widths due to strains were computed, the
widths are interpolated linearly as well. For axial symmetry, the interpolation
is trivial. For non-axial symmetry, it proceeds in three steps. First the triangu-
lar grid is interpolated to a rectangular one with the same number of knots on
the equator θ = π/2. Second a two-dimensional tensor-product spline repres-
entation of the surface is constructed using the information about orientational
gradients at the borders of the unique region used (Table 4.1). Third, this surface
is evaluated for the knots of a higher resolution triangular EasySpin grid. Using
this procedure, the number of orientations is usually increased by a factor up to
100.

Starting from the interpolatively enlarged peak list, peaks with negligible amp-Spectrum
construction litude are removed (Section 2.8) and the various spectrum construction methods

from Chapter 3 are applied. For cw EPR and ENDOR, the choice depends on
the presence of anisotropic line broadening. If it is absent, the projective methods
from Section 3.1.4 are used, otherwise scaled copying (Section 3.3.2) and gradient-
weighted accumulation (Section 3.1.3) are used. For pulse EPR spectra, the con-
volution method of Section 3.2.3 is applied.

If selected by the user, a purely phenomenological line broadening in the spec-Convolution
tral domain is added by convolution. The corresponding line width is specified
in System.lw (for cw EPR, in mT), in System.lwEndor (for ENDOR, in MHz)
and in System.lwEseem (for pulse EPR, in MHz). It is convoluted with the final
stick spectrum.

5.3 Some examples

In the following some illustrative examples of the use of EasySpin utility and
simulation functions are given.

Spin operators are computed using the function sop (see Appendix A for for-Spin operators
mulas). It takes as parameters the vector of the spin quantum numbers and a
string specifying the components (one letter from the set xyz+-e for each spin).
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A simple example is
SxIy = sop([1/2 1/2],’xy’) % two spins-1/2

SxIy =

0 0 0 0 - 0.25i
0 0 0 + 0.25i 0
0 0 - 0.25i 0 0
0 + 0.25i 0 0 0

Spin systems are specified via a structure collecting all spin Hamiltonian para- Spin
Hamiltoniansmeters. There are several functions for constructing the spin Hamiltonian or se-

lected parts of it. The following code defines the spin system from Figure 2.5 and
extracts the zero-field splitting part.

b = -2527.53/60; c = -24.84/1260; % in units of MHz
TbSys = struct(’S’,7/2,’g’,[1 1 1]*2.0136,...
’B40’,b,’B44’,[5*b 0],’B60’,c,’B64’,[-21*c 0]);

zfield(TbSys) % zero field splitting part

ans =

1.0e+04 *

-1.7718 0 0 0 -1.4512 0 0 0
0 3.2982 0 0 0 -2.2190 0 0
0 0 0.7359 0 0 0 -2.2190 0
0 0 0 -2.2624 0 0 0 -1.4512

-1.4512 0 0 0 -2.2624 0 0 0
0 -2.2190 0 0 0 0.7359 0 0
0 0 -2.2190 0 0 0 3.2982 0
0 0 0 -1.4512 0 0 0 -1.7718

The field-independent spin Hamiltonian components of Eq. (2.7) on p. 15 can be
obtained by calling sham

[F,GxM,GyM,GzM] = sham(TbSys);

The function erot computes the rotation matrix associated with a set of three Euler angles
Euler angles as specified in Appendix C.

R = erot(pi./[3 4 5])

R =

-0.2230 0.7893 -0.5721
-0.9084 0.0446 0.4156
0.3536 0.6124 0.7071

The inverse function eulang extracts the Euler angles from R
>> eulang(R)

ans =

1.0472 0.7854 0.6283
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With the function levels energy levels as a function of magnetic field orient-Energy levels
ation and magnitude can be computed. The following code produces the level
diagram underlying Figure 2.5 on p. 27.

extB = linspace(0,2500,200); % mT
E = levels(TbSys,45*pi/180,4*pi/180,extB);
plot(extB,E);
xlabel(’magnetic field [mT]’);
ylabel(’energy [GHz]’);

The function eigfields uses the eigenfield method of Section 2.2.1 (p. 21) toEigenfields
obtain resonance fields and amplitudes. The code

Params.mwFreq = 10; % in GHz
Orientations = [0;0]; % [phi;theta]
[ResFields,Amplitudes] = eigfields(ThSys,Params,Orientations);
line([ResFields ResFields]’,[zeros(size(ResFields)) Amplitudes]’);

directly produces a cw EPR stick spectrum with correct amplitudes.
cw EPR spectra are computed by the function pepper. A simple example ofcw EPR

spectra an S = 1/2 system with g strain is given below. The effect of magnetic field
modulation (see p. 60) is included by a call to the function pseumod

Sys = struct(’S’,1/2,’g’,[2.1 2 1.9]);
Sys.gStrain = [.02 .005 .05];
Exp = struct(’Range’,[300,380],’mwFreq’,9.5); % mT and GHz
Opt.nKnots = 6; Opt.nSpline = 4; % orientational grid resolution

[Fields,Spec] = pepper(Sys,Exp,Opt);
spectrum = pseumod(Fields,Spec,0.5); % modulation amplitude in mT

plot(Fields,Spec);
xlabel(’magnetic field [mT]’);

The fields nKnots and nSpline in the options structure specify the number of
knots along a quarter of a meridian (M in Eq. (4.25) on p. 104) and the interpola-
tion factor, respectively.

The function salt computes ENDOR spectra. The input code for a simpleENDOR
spectra example is

Sy = struct(’S’,1/2,’I’,1,’g’,[2.25 2.25 2],’gn’,nucgval(’14N’),...
’A’,48+4*[-1 -1 2],’Apa’,[0 pi/4 0],’Q’,-.84*[-1 -1 2],...
’HStrain’,[1 1 1],’lwEndor’,.7);

Ex = struct(’Range’,[16,33],’Field’,308.46,...
’nPoints’,512,’mwFreq’,9.681,’ExciteWidth’,200);

Op = struct(’Threshold’,1e-4,’nKnots’,10);

[x,y] = salt(Sy,Ex,Op);

the field Apa in the system structure Sy specifies the Euler angles for the orient-
ation of A in the g frame. In addition, there are more line width specifiers than
in the cw EPR case. The field HStrain defines a general distribution of spin
Hamiltonian eigenvalues due to unresolved hyperfine couplings. lwEndor is a
pure convolutional line width which is added to the simulated stick spectrum.
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5.3 Some examples

ExciteWidth in the experiment structure gives the excitation width in units of
MHz.

The function safran can compute the time-domain signal of any pulse EPR Pulse EPR
spectraexperiment. The most common experiments like two-pulse and three-pulse ES-

EEM and HYSCORE are pre-defined, for the others the pulse sequence and the
incrementation scheme (see Section 2.5.3) can be specified explicitly. For example,
the HYSCORE spectrum in Figure 3.23(b) was computed using the code

eta = 0.5; P = 2.4/4;
System = struct(’S’,.5,’g’,2,’I’,1,’gn’,nucgval(’14N’),...

’A’,5,’Q’,P*[-(1-eta) -(1+eta) 2],’HStrain’,0.1);
dt = 0.05; % in microseconds
Params = struct(’mwFreq’,9.797369,’Field’,350,’Sequence’,’HYSCORE’,...

’tau’,.136,’nPoints’,256,’dt’,dt,’tp’,.01);
Options = struct(’nOffset’,2,’nKnots’,91,...

’BinThreshold’,5e-3,...
’SimulationFrame’,’rot’);

td = safran(System,Params,Options);

td now contains the pulse EPR time-domain signal. A few more lines of code pro-
duce the magnitude spectrum by base-line correction, apodization, zero-filling
and Fast Fourier Transform.

w = apodize([],Params.nPoints,2*pi);
td = (td - mean(td(:))).*(w*w’);
spec = fftshift(fft2(td,size(y,1)*2,size(y,2)*2));
spec = abs(spec(1:2:end,1:2:end);
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A Spin operators
This appendix collects formulas for all spin operators necessary to set up the EPR
spin Hamiltonian and perform spectral simulation. It is compiled mainly for the
convenience of the reader.

Spin vectors are usually represented in terms of their Hermitian cartesian com- Spin vectors
ponent operators Sx, Sy and Sz. Sometimes, the non-Hermitian operators S+ =
Sx + iSy and S− = Sx − iSy are used

S =





Sx
Sy
Sz



 =





(S+ + S−)/2
(S+ − S−)/2i

Sz



 . (A.1)

For a spin S the component operators are matrices of dimension 2S + 1. They Zeeman basis
are always represented in the Zeeman basis with states |S, m〉 (m = −S, . . . , S) or
in short |m〉 that satisfy

〈m′|Sx|m〉 = (δm+1,m′ + δm,m′+1)
1
2

√

S(S + 1)−m′m (A.2)

〈m′|Sy|m〉 = (δm′+1,m − δm,m′+1)
1
2i

√

S(S + 1)−m′m (A.3)

〈m′|Sz|m〉 = δm′,mm (A.4)

〈m′|S+|m〉 = δm+1,m′
1
2

√

S(S + 1)−m′m (A.5)

〈m′|S−|m〉 = δm,m′+1
1
2

√

S(S + 1)−m′m . (A.6)

The basis states in the matrices are in descending m order |S〉, |S− 1〉, . . . , | − S〉.
Spin operator matrices for single spins are easy to construct. Sz is a diagonal Matrices
matrix with S, S − 1, . . . , −S on its main diagonal. For the other four operators,
all elements except the upper or lower diagonals are zero. Along these diagonals
the values are

dk =
√

k(2S + 1− k) k = 1, 2, . . . , 2S , (A.7)

or in a more explicit form

S = 1/2
S = 1
S = 3/2
S = 2
S = 5/2

√
1√

2
√

2√
3
√

4
√

3√
4
√

6
√

6
√

4√
5
√

8
√

9
√

8
√

5

(A.8)

121



A Spin operators
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Figure A.1: Spin operator matrix representations in the Zeeman basis. (a) Matrices of the
various operators. Only shaded areas are non-zero and contain the elements from Eq.
(A.7). (b) State ordering in matrices for a two-spin system with S1 = 3/2 and S2 = 1.

For S+ (S−) only the upper (lower) diagonal is non-zero. Sx and Sy are the linear
combinations of S+ and S− as given in Eq. (A.1). This is illustrated in Figure A.1.

The cartesian operators for S = 1/2, S = 1 and S = 3/2 are

Sx =
1
2

(

0 1
1 0

)

Sy =
i
2

(

0 −1
1 0

)

Sz =
1
2

(1
2 0
0 − 1

2

)

(A.9)

Sx =
1
2





0
√

2 0√
2 0

√
2

0
√

2 0



 Sy =
i
2





0 −
√

2 0√
2 0 −

√
2

0
√

2 0



 Sz =





1 0 0
0 0 0
0 0 −1





(A.10)

Sx =
1
2









0
√

3 0 0√
3 0

√
4 0

0
√

4 0
√

3
0 0

√
3 0









Sy =
i
2









0 −
√

3 0 0√
3 0 −2 0

0 2 0 −
√

3
0 0

√
3 0









Sz =
1
2









3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2









. (A.11)

The cartesian operators are orthogonal and satisfy

tr(SkSl) =
1
3

S(S + 1)(2S + 1)δkl k, l = x, y, z . (A.12)

Zeeman states of a spin system with more than one spin are the tensor productProduct basis
of the states of the individual spins

|S, mS, I, mI〉 ≡ |mS, mI〉 = |mS〉 ⊗ |mI〉 (A.13)
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Table A.1: Extended Stevens operators Oq
k(S). The notation [A, B]+ indicates the anticom-

mutator AB + BA, and s = S(S + 1), c+ = 1/4, c− = −i/4. Taken from Appendix V
(p. 512) of [Alt74], compatible with Table 16 (p. 863) from [Abr86].

k q Oq
k(S)

2 0 3S2
z − s1

±1 c±
[

Sz, S+ ± S−
]

+

±2 2c±(S2
+ ± S2

−)

4 0 35S4
z − (30s− 25)S2

z + (3s2 − 6s)1

±1 c±
[

7S3
z − (3s + 1)Sz, S+ ± S−

]

+

±2 c±
[

7S2
z − (s + 5)1, S2

+ ± S2
−
]

+

±3 c±
[

Sz, S3
+ ± S3

−
]

+

±4 2c±(S4
+ ± S4

−)

6 0 231S6
z − (315s− 735)S4

z + (105s2 − 525s + 294)S2
z − (5s3 − 40s2 + 60s)1

±1 c±
[

33S5
z − (30s− 15)S3

z + (5s2 − 10s + 12)Sz, S+ ± S−
]

+

±2 c±
[

33S4
z − (18s + 123)S2

z + (s2 + 10s + 102)1, S2
+ ± S2

−
]

+

±3 c±
[

11S3
z − (3s + 59)Sz, S3

+ ± S3
−
]

+

±4 c±
[

11S2
z − (s + 38)1, S4

+ ± S4
−
]

+

±5 c±
[

Sz, S5
+ ± S5

−
]

+

±6 2c±(S6
+ ± S6

−)

Spin operators of the the two-spin system are tensor products as well, e.g. Sx ⊗ Iz
or 12S+1 ⊗ Iy.

These tensor products are computed using the Kronecker product Kronecker
product

A⊗ B =











A11B A12B · · · A1mB
A21B A22B · · · A2mB

...
...

...
An1B An2B · · · AnmB











(A.14)

where A and B can be vectors (states) or matrices (operators). The standard or-
dering of the product states is illustrated in Figure A.1(b).

For higher-order terms in the spin Hamiltonian a plethora of different oper- Higher-order
termsator sets exists. For an enlightening discussion of them and the confusion in the

literature, see [Rud01]. The most common definition

HZF(S)/h = HZF(S) = ∑
k=2,4,6

k

∑
q=−k

Bq
kOq

k(S) (A.15)
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A Spin operators

uses the extended Stevens operators1 Oq
k and real coefficients Bq

k . Sometimes nor-
malised coefficients bq

k = Bq
k / fk with f2 = 1/3, f4 = 1/60 and f6 = 1/1260 are

used. Oq
k(S) are polynomials in S and are Hermitian. They are listed in Table A.1.

If q ≥ 0, Oq
k(S) is real, else imaginary. This behaviour is analogous to Sx and Sy.

A few other parameters for high-order terms are conventionally used. D andS2 terms
E of the ZF Hamiltonian in Eq. (1.16) on p. 9 are

1
3

DO0
2 + EO2

2 D = 3B0
2 E = B2

2 . (A.16)

For high-spin systems, S4 terms with parameters a and F are often used, withS4 terms

F
180

O0
4(S)

a
120

[

O0
4(S) + 5O4

4(S)
]

, (A.17)

so that
a = 24B4

4 F = 180B0
4 − 36B4

4 . (A.18)

For S6 terms, only one conventional parameter is occasionally usedS6 terms

G
1260

O3
6 hence G = 1260B3

6 . (A.19)

1 Stevens introduced only operators with q ≥ 0. In this form they were also given in the famous
Table in [Abr86]. Later the set was extended to q < 0. Altogether they form a set of tesseral tensor
operators. Spherical tensor operators are rarely used in EPR.
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B Line shapes
This appendix summarises formulas for Gaussian and Lorentzian line shapes
(see Figure B.1), just for reference. For a full discussion, see [Poo99].

x0 denotes the centre of the line, Γ the distance between the inflection points of Width
the zero derivative function, satisfying

∂2

∂x2 f (x, x0, Γ)

∣

∣

∣

∣

x=x0±Γ

= 0 , (B.1)

that is, Γ is the peak-to-peak distance in the first derivative of function f . Γ is
therefore the preferred parameterisation of first derivative shapes as encountered
in cw EPR and ENDOR. For absorption spectra (pulse EPR, pulse ENDOR, etc.),
the full width at half height ΓFWHH is more intuitive. Its conversion to Γ depends
on the nature of the line shape function

Lorentzian: ΓFWHH =
√

3Γ (B.2)

Gaussian: ΓFWHH =
√

2 ln 2Γ . (B.3)

For a Lorentzian line shape we have Shape
formulas

∫ x

−∞

fL(y, x0, Γ) dy =
1
2

+
1
π

arctan
(

2√
3

x− x0

Γ

)

(B.4)

fL(x, x0, Γ) =
2

π

√
3

1
Γ

[

1 +
4
3

(

x− x0

Γ

)2
]−1

(B.5)

∂

∂x
fL(x, x0, Γ) = − 16

3π
√

3
1

Γ2
x− x0

Γ

[

1 +
4
3

(

x− x0

Γ

)2
]−2

(B.6)

For a Gaussian
∫ x

−∞

fG(y, x0, Γ) dy =
1
2

+
1
2

erf
(√

2
x− x0

Γ

)

(B.7)

fG(x, x0, Γ) =

√

2
π

1
Γ

e−2
(

x−x0
Γ

)2

(B.8)

∂

∂x
fG(x, x0, Γ) = −4

√

2
π

1
Γ2

x− x0

Γ
e−2

(

x−x0
Γ

)2

(B.9)
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B Line shapes
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Figure B.1: Gaussian (solid) and Lorentzian (dashed) absorption line shape functions nor-
malised to maximum amplitude 1. (a) Linear plot, (b) logarithmic plot.

The line shape functions fG(x) and fL(x) are normalised

∫ +∞

−∞

f (x, x0, Γ) dx = 1 . (B.10)

Their values at x = x0 are

fL(x0, x0, Γ) =
2√
3π

1
Γ

fG(x0, x0, Γ) =

√

2
π

1
Γ

. (B.11)

The Fourier transform of a Gaussian is again Gaussian with ΓFT = 4/Γ. TheFT
Fourier Transform of a Lorentzian is a exponential decay e−t/τ with decay con-
stant τ = 2/(

√
3Γ). For more details on these relationships, see [Poo87].

The convolution of a Gaussian with line width Γ1 with another Gaussian withConvolution
line width Γ2 gives again a Gaussian

fG(x, x1, Γ1) ∗ fG(x, x2, Γ2) = fG(x, x1 + x2, Γ) with Γ =
√

Γ2
1 + Γ2

2 . (B.12)

The convolution of a Lorentzian with a Gaussian (the so-called Voigt line shape)
cannot be expressed in closed form. A close approximation is the pseudo-Voigt
function

fpV(x, x0, ΓG, ΓL) = α fG(x, x0, ΓG) + (1− α) fL(x, x0, ΓL) (B.13)

with 0 ≤ α ≤ 1.
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C Relative orientations
Relative orientations between two objects are usually defined by means of three Euler angles
rotation angles, the so-called Euler angles. Since their varying definitions1 often
cause confusion and they are difficult to grasp visually, this hopefully helpful
appendix summarises definitions, formulas and two diagrams.

In EPR, the relative orientation of an object (a matrix A or vector v) with respect Passive
rotationto some reference object (the spectrometer, the molecule, the g matrix) is usually

specified by the passive rotation R which transforms the coordinate system, in
which the object is represented, into that of the reference object

v′ = Rv A′ = RART . (C.1)

So the rotation is passive with respect to the object (it leaves its spatial orientation
untouched, v′ ∼= v, A′ ∼= A), but active with respect to its frame of representation.

Any relative orientation between a starting frame xyz and another frame XYZ Elementary
rotationscan be described by three subsequent elementary rotations (see Figure C.1)

1. Rotation of xyz by angle α counterclockwise around the z axis gives a new
frame x′y′z′ with z′ = z.

2. Rotation of x′y′z′ by angle β counterclockwise around the new y′ axis gives
a new frame x′′y′′z′′ with y′′ = y′.

3. Rotation of x′′y′′z′′ by angle γ counterclockwise around the new z′′ axis
gives the new frame XYZ with Z = z′′.

The rotation matrix describing the transformation is R matrix

R(α, β, γ) = Rz′′ (γ)Ry′ (β)Rz(α) (C.2)

=





cγ sγ 0
−sγ cγ 0

0 0 1









cβ 0 −sβ
0 1 0

sβ 0 cβ









cα sα 0
−sα cα 0

0 0 1



 (C.3)

=





cγcβcα− sγsα cγcβsα + sγcα −cγsβ
−sγcβcα− cγsα −sγcβsα + cγcα sγsβ

sγcα sβsα cβ



 (C.4)

1 The definitions here are used in [Sch01]. In NMR and angular momentum theory, other definitions
are sometimes used, using active instead of passive rotations or other axes for the three elementary
rotations.

127



C Relative orientations
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Figure C.1: Relative orientation between two frames xyz and XYZ described by three
Euler angles α, β, and γ.

with the abbreviations cα = cos α, sα = sin α, etc. R is a special orthogonal matrix

det(R) = 1 R−1 = RT . (C.5)

The Euler angles are not a unique parameterisation for R, there are severalAmbiguity
angle triplets that give the same R as (α, β, γ)

R(α, β, γ) = R(α± π,−β, γ± π)

= RT(−γ,−β,−α) = RT(±π− γ, β,±π− α) . (C.6)

In the special case β = 0, the first and the third rotation degenerate, that is, they
are around the same axis (z = z′′), and α and γ cannot be distinguished, since
R(α, 0, γ) = R(0, 0, α + γ) = R(α + γ, 0, 0) etc. The transformation (α, β, γ) → R
is unique, if one restricts the domain of the angles, e.g.

0 < α ≤ π, β > 0, 0 < γ < π . (C.7)

With this domain restriction, it is possible to compute the angles from a given R.
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Publications

Conference posters
P1 S. Stoll and A. Schweiger, A MATLAB toolbox for modelling EPR spectra.

EMARDIS’99 Conference, Sofija, Bulgaria (1999)

P2 S. Stoll and A. Schweiger, Generalized Frequency Domain Calculations of Pulse
EPR Spectra of Disordered Systems. 23rd International EPR Symposium at the
Rocky Mountain Conference on Analytical Chemistry, Denver, USA (2000)

Conference talks
T1 Pulse EPR investigations of axially coordinated Co(II)-heptamethyl corbyrinate, a

coenzyme B12 model. EMARDIS’99, Sofija, Bulgaria (1999)

T2 Advances in EPR Spectral Simulations of Disordered Systems. Annual Meeting
of the Israel Magnetic Resonance Club, Haifa, Israel (2001)

T3 Fast and accurate construction of time-domain signals in frequency domain simula-
tions of ESEEM spectra of disordered systems. 14th ISMAR conference, Rhodes,
Greece (2001)

T4 New approaches in computational EPR spectroscopy. Colloquium, Laboratory
of Physical Chemistry, ETH Zürich, Switzerland (2002)

T5 A Robust and Fast Algorithm for the Computation of cw EPR Resonance Fields.
EPR group meeting of the Royal Society of Chemistry, Manchester, UK
(2003)

Reviewed articles
A1 S. Stoll, G. Jeschke, M. Willer and A. Schweiger, Nutation-Frequency Correl-

ated EPR Spectroscopy: The PEANUT Experiment. J. Magn. Reson. 130(1), 86–
96 (1998)

A2 S. Van Doorslaer, J. J. Shane, S. Stoll, A. Schweiger, M. Kranenburg and
R. J. Meier. Continuous wave and pulse EPR as a tool for the characterization of
monocyclopentadienyl Ti(III) catalysts. J. Organomet. Chem. 634(2), 185–192
(2001)

A3 S. Stoll and A. Schweiger, Rapid Construction of Time-Domain Signals from
Frequencies and Amplitudes. J. Magn. Reson., in print (2003)
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Publications

A4 S. Stoll and A. Schweiger, A Robust and Fast Algorithm for the Computation of
cw EPR Resonance Fields. In preparation.

A5 S. Stoll and A. Schweiger, Adaptive orientation meshes for the simulation of
magnetic resonance spectra of disordered systems. In preparation.

A6 S. Stoll and A. Schweiger, Frequency-domain simulation of ESEEM spectra. In
preparation.
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