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Computational Modeling and Least-Squares Fitting
of EPR Spectra
Stefan Stoll

3.1
Introduction

In EPR (electron paramagnetic resonance) spectroscopy, computer simulation and
least-squares fitting are essential in extracting quantitative structural and dynamic
parameters from experimental spectra. Without numerical methods, this extraction
would be restricted to simple systems. This chapter summarizes simulation and
fitting methods that have been proposed in the literature and implemented in
software. It includes an extensive, though not complete, list of references.

Emphasis is placed on methods currently implemented in the software package
EasySpin [1], which covers EPR simulations in the following regimes: (i) rigid-
limit continuous-wave (cw) EPR spectra for arbitrary spin systems, for both
powders and single crystals, at various levels of theory including eigenfields, matrix
diagonalization, and perturbation theory; (ii) dynamic EPR spectra of tumbling
spin centers with one electron spin and several nuclei, implementing stochastic
Liouville equation (SLE) solvers and perturbative approaches; (iii) EPR spectra in
the fast-motion limit, using either a Breit–Rabi solver or perturbation theory; (iv)
dynamic EPR spectra due to chemical exchange in solution, implementing a direct
Liouville-space method; (v) solid-state ENDOR (electron nuclear double resonance)
spectra based on either matrix diagonalization or perturbation theory; and (vi) pulse
EPR spectra for general pulse sequences using the Hilbert-space density matrix
formalism in the high-field limit. All these simulation regimes are reviewed in the
following.

Similarly to many other programs, EasySpin also provides a range of least-
squares fitting algorithms, among them Levenberg–Marquardt (LM), Nelder–Mead
simplex, genetic algorithms, particle-swarm optimization, as well as simple Monte
Carlo and grid searches. These algorithms, as well as the objective function choice,
multicomponent fitting, and error analysis, are discussed below.

This chapter is not intended to be a complete review of all theory underlying EPR
simulation methods, which would be utterly impossible. Instead, it summarizes
theoretical and algorithmic aspects that are implemented in or are relevant to
EasySpin. Applicability and limitations of methods are discussed as well. The
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chapter is not concerned with the specifics of usage of software packages. Tutorials
and documentation for EasySpin can be found online at easyspin.org.

Many reviews have appeared over time that summarize progress in the method-
ology for EPR spectral simulation and fitting and that describe available simulation
programs, starting with very early ones [2–4] up to more recent times [5–8]. A
previous Handbook of ESR included a review on computer techniques [9]. A very
detailed review of simulation methods and programs as of 1992 is contained
in the book by Mabbs and Collison [10]. A list of software available in 1993 is
published [11].

In the following, after summarizing key aspects of available simulation software
packages, we discuss the basic aspects of EPR simulations and then progress to
describe methods for static and dynamic cw EPR spectra, pulse EPR, ENDOR,
and DEER (double electron–electron resonance) spectra. Subsequently, a section
is dedicated to least-squares fitting. After a short section covering topics such as
spin quantitation and data formats, we summarize in the conclusion some of the
challenges that still lie ahead.

3.2
Software

In this section, we describe a few details about EasySpin and other EPR simulation
programs. Some of them are available online, and many others can be obtained
from their authors. A few have ceased to be developed and are no longer maintained.

3.2.1
EasySpin

EasySpin, developed by the author, was originally conceived as an in-house simula-
tion program for solid-state cw EPR spectra in the laboratory of Arthur Schweiger
at ETH Zurich, with a first public release in 2000. The initial work is documented
in a 2003 PhD thesis [12] and, including subsequent extensions, in a 2006 article
in Journal of Magnetic Resonance [1]. A summary of EasySpin functionality relevant
to nitroxides was subsequently published [13].

Since its first publication, EasySpin has advanced on many levels. Thanks to
feedback from the worldwide user community, bugs were corrected, algorithms
became more robust, implementations became faster, and more regimes and
experiments were added. Notably, support for pulse EPR simulations was added in
2009 [14], least-squares fitting was introduced in 2010, and chemical exchange was
implemented in 2012.

The program continues to be developed, with the ultimate goal of removing the
data analysis and simulation bottleneck from the EPR discovery process. Its core
strengths are solid-state cw EPR spectra as well as ENDOR and ESEEM (electron
spin echo envelope modulation) spectra, with growing support for slow-motion
simulations and other more specialized situations.
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3.2.2
Other Software

EasySpin draws substantially from methods implemented in other, mostly older,
EPR simulation programs. In the following, we give a partial list. The National
Institute of Environmental Health Sciences (NIEHS) maintains a database of
EPR simulation programs (electron spin resonance software database, ESDB) [15],
including programs of limited availability and dedicated to specific problems.

Bruker ships certain spectrometers with SimFonia, a simulation program devel-
oped by Weber at Bruker in the 1990s [16]. Hanson and coworkers have developed
Sophe, a widely used simulation program for solid-state EPR spectra [17–23] that
has been equipped with a graphical user interface (UI) by Bruker and marketed
as XSophe. A more modern UI to Sophe called Molecular Sophe (MoSophe) has
recently been developed [24].

WinSIM is dedicated to solution spectra of spin traps and was developed at
the NIEHS [25]. Hendrich [26] has developed SpinCount, a program that empha-
sizes spin quantitation. Slow-motion spectra of nitroxide radicals can be simulated
and fitted using the suite of highly optimized SLE solvers developed by the
Freed group at the ACERT center at Cornell [27–30]. Altenbach has developed a
code dedicated to nitroxide labels [31]. Dipolar broadening of cw EPR spectra of
nitroxides can be analyzed using DIPFIT [32]. E-SpiReS is a program for slow-
motion simulation that also interfaces to quantum chemistry programs [33, 34].
At Manchester, an in-house code has been used to simulate hundreds of spectra
in a book about transition metal ion EPR [10]. Weil’s program EPRNMR [35] is
designed for solid-state EPR and has extensive support for single-crystal spectra.
DDPOW supports binuclear complexes [36]. QPOW [37] and SIMPOW6 [38] were
developed at the University of Illinois. Sim is a program by Weihe that accepts
arbitrary Hamiltonian matrices as input [39, 40]. SPIN, developed at the National
High Magnetic Field Laboratory, is tailored toward high-spin systems. Xemr is
a general-purpose EPR simulation program [41]. EPRsim32 [42] is a powder cw
EPR simulation program that includes genetic fitting algorithms. Rockenbauer
and Korecz [43] have developed a general simulation program that includes chem-
ical exchange. Another still popular program for chemical exchange was created
by Heinzer in the early 1970s [44, 45]. WinMOMD is a program for simula-
tion of slow-motional nitroxide spectra using the MOMD (microscopic order,
macroscopic disorder) model [46]. EWVoigt is geared toward nitroxide spectra in
the fast-motion regime and utilizes convolution methods [47]. EPRSIM-C imple-
ments a variety of models for nitroxide spectra and includes evolutionary fitting
algorithms [48].

Several programs were developed specifically for ENDOR and ESEEM simula-
tions. MAGRES from Nijmegen [49, 50] was an early one. GENDOR is an ENDOR
simulation program developed by Hoffman at Northwestern [51–53]. HYSCORE
(hyperfine sublevel correlation) simulation programs were pioneered by Goldfarb
[54] and Schweiger [55]. Astashkin’s program SimBud is equipped with a UI [56].
OPTESIM [57] provides ESEEM simulations and least-squares fitting.
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Many simulation programs for NMR spectra have been developed over the years
and have been reviewed [58–61]. Among the many programs, SIMPSON [62],
SPINEVOLUTION [63], and Spinach [64] are particularly widely used. Spinach is
a very general and efficient spin dynamics code that is geared toward large NMR
spin systems, but supports EPR experiments as well.

In addition to the programs mentioned, there are many excellent in-house codes
developed by various research groups, but are not separately described in literature,
and are either not distributed or have not seen widespread use.

3.3
General Principles

3.3.1
Spin Physics

The simulation of EPR spectra is based on a spin Hamiltonian that describes
the interactions amongst the spins in the spin system and between the spins
and the externally applied magnetic field. The following summarizes the most
common terms in the spin Hamiltonian used to model EPR spectra [65]. We do
not intend to outline the complete theoretical basis. Instead, the discussion is
limited to some aspects that are often overlooked by users and that are important
for obtaining correct simulation results. We also summarize the basic quantum
dynamic equations needed to compute EPR spectra.

3.3.1.1 Interactions
EPR spectra are generally simulated on the basis of a spin Hamiltonian (sH), an
effective Hamiltonian that represents the subset of closely spaced and low-lying
energy levels of a spin center that are accessible in EPR experiments as a spin
system, a network of coupled (effective) electron spins and nuclear spins [66].
The sH model is not universally valid and becomes inadequate, for example, in
the presence of very large spin–orbit coupling or in the gas phase. Essentially all
common simulation programs are based on an sH. The sH (often expressed in
angular frequency units) consists of a sum of interaction terms

H =
∑

i

(Hez,i + Hzf ,i) +
∑

i,j

Hss,i,j +
∑
i,k

Hhf ,i,k +
∑

k

(Hez,i + Hnq,i)

where i and j run over the electron spins and k runs over the nuclear spins in
the system. In the following, we present the conventional forms of the various
terms that mostly utilize Cartesian spin vector operators, ST = (Sx,Sy,Sz)T and
IT = (Ix, Iy, Iz)T, where T indicates the transpose of the matrix.

The electron Zeeman interaction in angular frequency units is described by

Hez =
−BT

𝝁el

ℏ
= +

(𝜇B

ℏ

)
BTgS
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with the 3× 3 g-matrix g. The externally applied magnetic field B includes both

the static and microwave fields. Another form of the term is
(
𝜇B

ℏ

)
STgB. Often,

it is assumed that g is symmetric, g = gT, since it is not possible to determine
the antisymmetric component of g from conventional cw EPR spectra employing
linearly polarized microwave [67]. In this case, the two forms are identical. However,
g-matrices calculated by quantum chemical programs are generally asymmetric
[68]. Then, the two forms are not identical [65] and one has to verify that the
quantum chemistry program and the EPR simulation program assume the same
form. If the EPR simulation software only supports symmetric g matrices, the
effective symmetric matrix gsym corresponding to a given asymmetric g can be

obtained from gsym = (ggT)
1
2 .

Higher order electron Zeeman terms proportional to B and S3 or S5 are in
principle possible [66] and have been reported [69–72]. Very few programs, such
as EPRNMR [73], have provisions for these terms.

The nuclear Zeeman interaction contribution to the EPR spin Hamiltonian (in
angular frequency units) is given by

Hnz =
−BT

𝝁nuc

ℏ
= −

(𝜇N

ℏ

)
BTgnI

where gn is the isotropic nuclear g-factor and 𝜇N is the nuclear Bohr magneton.
Any anisotropy in gn (chemical shift anisotropy) is very small compared to gn itself
and is generally neglected in EPR. The pseudo-nuclear Zeeman effect [67, 74] in
high-electron-spin systems manifests itself in a significant apparent anisotropy of
an effective gn. It arises naturally when the full spin system is simulated, but can be
taken into account explicitly in perturbational treatments with a restricted system.

The hyperfine (hf) interaction (in angular frequency units) between an electron
spin S and a nuclear spin I is anisotropic and described by a general 3× 3 coupling
matrix A

Hhf = STAI

Another form of the hf interaction ITAS is identical to STAI only if the hyperfine
coupling matrix A is symmetric. In general, there are three contributions to
A ∶ A = aiso + T + AL, where aiso is the isotropic Fermi contact term, T is the
matrix describing the magnetic dipole–dipole coupling between the electron and
nucleus (axially symmetric in the limit of the point-dipole approximation of a
completely localized electron spin), and AL is a generally asymmetric 3× 3 matrix
describing the orbital contribution [75]. In analogy to the g-matrix, not all programs
allow the input of nonsymmetric A matrices.

The interaction energy between the nuclear electric quadrupole moment of a
nucleus with I > 1

2
and the local electric field gradient is described in the sH by

Hnq = ITPI

where P is the traceless nuclear quadrupole tensor [75]. Although this term can
have significant effects on cw EPR spectra (e.g., on Au(II) complexes [76]), it is not
implemented in all EPR simulation programs.
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The coupling between two electron spins is described by the general form

Hss = ST
1 J12S2

with a general 3× 3 coupling matrix J12 [77]. It can contain three contributions:
J12 = Jex + Jdip + Jas. The first is the isotropic exchange coupling, Jex. The associated
term, called the Heisenberg–Dirac–van Vleck Hamiltonian, is encountered in the
literature in several different forms (JexST

1 S2, 2JexST
1 S2, −2JexST

1 S2), so that care
has to be exercised in ensuring correct conversion between the definitions of
Jex in the literature and in the simulation program. The second contribution
is the symmetric magnetic dipole–dipole coupling, Jdip, analogous to T in the
hyperfine term. The third contribution, Jas, is antisymmetric and describes the
Dzyaloshinskii–Moriya interaction [77]. The corresponding term can be written in
vector form as JT

as(S1 × S2).
Another term describing electron–electron coupling that is occasionally

included in the spin Hamiltonian for transition metal ion dimers is biquadratic
exchange [78, 79] of the form −j(ST

1 S2)2. It is supported by a few programs such
as SPIN and EasySpin.

The quadratic zero-field splitting term for an electron spin 𝑆 > 1
2

is given by

Hzf = STDS

with the (usually made traceless) symmetric 3× 3 zero-field tensor D, in angular
frequency units [65]. Two common issues with this term are the notational
ambiguity of D (it indicates the full tensor as well as the scalar parameter equal
to 3

2
the largest principal value of the tensor) as well as the variety of axis-labeling

conventions [80, 81], which determine the values and relative signs of the scalar
zero-field parameters D and E.

Beyond the most common quadratic zero-field term, a variety of higher order
single-spin terms containing Sk with k > 2 are used in the sH for high-spin
transition and rare earth ions [66]. These include the two fourth-order terms with
the conventional parameters a and F used for Fe(III) and Mn(II) ions [67, 82–85].
They have been included in early simulation programs [86]. Care has to be exercised
concerning the correct axis definitions. Beyond these conventional parameters, the

general form for the high-order terms is H =
∑2S

k=2

∑+k

q=−k
B𝑘𝑞O𝑘𝑞(S), where B𝑘𝑞

represents the scalar interaction parameters and O𝑘𝑞(S) represents the tensor
operator components for an electron spin S. There is some degree of arbitrariness
in the choice of these tensor components, especially their phases. As a consequence,
there are a significant number of inconsistent definitions of O𝑘𝑞 in the literature.
The most common ones are the extended Stevens operators [87]. The various forms
and definitions of high-order terms have been extensively and critically reviewed
by Rudowicz [88–90]. A review of such parameters for all 32 point groups has been
compiled by Misra et al. [91]. The relation between D and E and the parameters B2q

has also been discussed [92, 93]. Rudowicz and Chung [94] list explicit expression
for operators O𝑘𝑞 up to k = 12. Efficient methods for the computation of the matrix
elements have been published recently [95, 96]. A general method for rotational
transformation of these high-order tensor sets is available [97], including tesseral
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tensor operators. Utmost care has to be taken with these terms, as definitions and
usage in the literature are often not only inconsistent, but sometimes incorrect as
well [98, 99].

In the construction of the sH, the evaluation of perturbational expressions and the
conversion between various energy and field units, accurate values of fundamental
constants are required. The values of these fundamental constants are regularly
updated every few years by CODATA based on continuous improvements in their
measurements [100]. The same holds for nuclear isotope properties, which were
updated last in 2011 [101]. Simulation programs should stay up-to-date in both
respects.

3.3.1.2 Quantum States and Spaces
In Hilbert space, a (pure) state of a spin system is described by a state vector, |k⟩.
In numerical representation, for an N-level spin system, this is an N × 1 vector.
The size of the Hilbert space, N, grows exponentially with the number of spins,
N =

∏
i(2Si + 1) ⋅

∏
k(2Ik + 1). As a consequence, the simulation of large spin

systems is challenging. Various basis sets are used to represent spin states, and the
best choice depends on the computational problem at hand. The most common
basis set for representing these vectors is the uncoupled Zeeman basis, where each
basis state is a product of single-spin Zeeman states, |𝑆,mS⟩ and |𝐼,mI⟩, with
the magnetic projection quantum numbers mS and mI. Another basis in Hilbert
space is the coupled basis, for example, the singlet–triplet basis for a system of
two coupled spins- 1

2
, with the singlet state |S⟩ and the triplet states |T−1⟩, |T0⟩, and|T+1⟩. Yet another basis is the eigenbasis, where the basis states are the eigenstates

of the spin Hamiltonian, H.
State vectors can only represent pure quantum states [102] and are sufficient if

only eigenstates of the spin Hamiltonian are required, such as in solid-state cw
EPR simulations. For representing mixed quantum states, the density operator is
required. It is a statistical state operator, 𝜎 =

∑
kpk|k⟩⟨k|, which can describe both

pure and mixed quantum states of spin systems and spin system ensembles [102,
103]. When represented in a basis in Hilbert space, the density operator is an
N × N matrix and is called the density matrix. It is generally advantageous to use the
density matrix for computing the quantum dynamics of spin systems [75, 104, 105].

The space of all operators in Hilbert space constitutes Liouville space. The
Liouville space of an N-level spin system is N2-dimensional. In one basis choice,
each Liouville state |u⟩|v⟩ corresponds to a pair of states |u⟩ and |v⟩, or a ‘‘transition’’|u⟩ ↔ |v⟩, in Hilbert space. In Liouville space, the density operator is represented as
an N2 × 1 vector. Operators in Liouville space, acting on Liouville vectors such as the
density matrix, are called superoperators and are numerically represented by N2 ×
N2 matrices. The Hilbert-space Hamiltonian corresponds to the Liouville-space

Hamiltonian commutation superoperator, whose matrix representation is ̂̂H =
H⊗ I − I⊗H, where⊗ is the Kronecker product. Eigenvalues and eigenvectors of
the Hamiltonian superoperator correspond to transition frequencies and transition
state pairs. The use of Liouville space was first introduced in NMR by Banwell and
Primas [106].
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As in Hilbert space, there exist several basis choices in Liouville space [105]. One
that is commonly used to derive analytical expressions in NMR and pulse EPR is the
Cartesian Zeeman product operator basis [105]. It forms the basis of the intuitive
product operator formalism [107]. A basis of irreducible spherical tensor operators
(ISTOs) [64, 108–110] or linear combinations thereof [111] is less intuitive, but
offers many computational advantages. In EPR, it has first been extensively utilized
by Freed and Fraenkel [112]. ISTOs are related to the high-order spin operator sets
used in the EPR spin Hamiltonian [72], as discussed above.

The description of systems with sets of equivalent nuclear spins can be simplified
by decomposing the associated Hilbert or Liouville space into separate subspaces
using the Clebsch–Gordan series of the rotation group by recursively applying
Dj1 ⊗ Dj1 = Dj1+j2 ⊗Dj1+j2−1 · · ·⊗D|j1−j2|. The sH is block-diagonal in the associated
basis. Also, magnetic equivalence of n nuclei means that the sH is invariant under
any permutation among the equivalent spins [113–115]. Therefore, the properties
of the associated permutation group 𝑆n can be leveraged to gain further insight
and to reduce the size of the problem [64, 116, 117]. In EPR, internuclear couplings
are generally negligible so that special considerations for the equivalence of spins
with I ≥ 1 and the effect of relaxation, as done in NMR [114, 115, 118], need not be
taken fully into account.

3.3.1.3 Equations of Motion
There are several possible equations of motion that can be used to describe the
dynamics of spin ensembles. The dynamics of a single spin- 1

2
can be described

classically. For such a system, the classical torque equation that describes the Larmor
precession (and nutation) of its magnetic moment vector or of the macroscopic
magnetization (magnetic moment per volume) in the external, possibly time-
dependent, magnetic field is dM

dt
= 𝛾eM × B(t).

To take spin relaxation into account, Bloch [119] augmented this equation by
phenomenological relaxation terms with time constants T1 and T2. The resulting
Bloch equations in matrix form [120] are

⎛⎜⎜⎜⎝
dMx

dt
dMy

dt
dMz

dt

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎝
−T−1

2 +γeBz −γeBy

−γeBz −T−1
2 +γeBx

+γeBy −γeBx −T−1
1

⎞⎟⎟⎠ +
⎛⎜⎜⎜⎝

0
0

Mz(0)
T1

⎞⎟⎟⎟⎠
and can be easily solved numerically.

These classical equations cannot be applied to spin systems with more than one
spin- 1

2
. In general, quantum dynamics has to be applied. There are three forms

of the quantum equation of motion for an EPR spin system: for states in Hilbert
space, for density operators in Hilbert space, and for density operators (which are
Liouville-space state vectors) in Liouville space.

The equation of motion for Hilbert-space state vectors |k⟩ is the Schrödinger
equation, d|k(t)⟩

dt
= −iH|k(t)⟩. Its integrated form is |k(t)⟩ = U(t, t0)|k(t0)⟩, with

the time propagation operator U satisfying the Schrödinger equation, dU(t,t0)
dt

=
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−i𝐻𝑈 (t, t0). If H is time independent, then U is a simple exponential operator
U(t, t0) = exp(−iHΔt) with Δt = t − t0.

The equation of motion for the density operator 𝜎(t) in Hilbert space is the
Liouville–von Neumann (LvN) equation, d𝜎(t)

dt
= −i[H, 𝜎(t)], with the commutator

[H, 𝜎] = 𝐻𝜎 − 𝜎𝐻 . In integrated form, it is 𝜎(t) = U(t, t0)𝜎(t0)U†(t, t0), with the
same propagator as above. This ‘‘sandwich’’ time propagation product is central
in Hilbert-space spin dynamics simulations. In this form, however, it is not
possible to incorporate stochastic processes such as rotational diffusion or chemical
exchange.

In Liouville space, the LvN equation is d𝜎
dt

= −i ̂̂H𝜎, with the Hamiltonian

commutation superoperator ̂̂H and the density operator in vector form, 𝜎 [105].
̂̂H is often denoted ̂̂L and called the Liouville superoperator. In integrated form, the

equation is 𝜎(t) = ̂̂U(t, t0)𝜎(t0), with the (super)propagator ̂̂U. In contrast to the
sandwich product in Hilbert space, this is a simple matrix–vector product.

To include stochastic processes into the dynamic model, the Liouville-space LvN
equation is extended to the SLE [121–123]. In one of its forms, the SLE is

d
dt
𝜎 = (−i ̂̂H + ̂̂𝛤 + ̂̂X)𝜎

with the stochastic relaxation superoperator ̂̂𝛤 and the chemical exchange super-

operator ̂̂X .
In Hilbert-space representation, the detected EPR signal V is computed from

the density operator using V(t) = trace(D 𝜎(t)), where D is the detection operator
representing quadrature detection, usually one of the electron spin ladder operators
S− or S+. From a Hilbert-space state vector, it can be computed using the expectation
value V = ⟨k|D|k⟩. In Liouville space, both D and 𝜎 are state vectors, and the
expectation value is the scalar product V = ⟨D|𝜎⟩. All these equations are usually
formulated in the rotating frame [75].

The two most common situations for which the above equations of motions are
solved in EPR are the 𝜋

2
pulse experiment with FID (free induction decay) acquisition

(pulse-acquire) [124] and the unsaturated steady-state limit [125]. Saturation is easily
incorporated into the steady-state solution [126].

3.3.2
Other Aspects

3.3.2.1 Isotopologues
When magnetic nuclei are present in a spin center, the sH interactions depend
on their nuclear spin quantum numbers, their gn factors (via the nuclear Zeeman
and hyperfine terms), and their electric quadrupole moments. Many elements have
magnetic isotopes. Several have one single dominant naturally abundant isotope
(magnetic: H, F, Na, Al, P, V, Mn, Co, Rh, I, etc.; nonmagnetic: C, O, S, etc.). In
these cases, there exists only one dominant isotopologue of the spin center, with
other isotopologues mostly negligible. Features from naturally low-abundant 13C
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are sometimes visible. On the other hand, many important elements have a mixture
of two or more significantly abundant isotopes with different nuclear properties
(e.g., B, K, Cl, Ti, Cr, Cu, Pd, etc.). Molecular spin centers with these elements occur
as a mixture of isotopologues that differ in their properties, resulting in a series of
overlapping spectra. For an accurate EPR simulation, EPR spectra of all significant
isotopologues have to be simulated separately and added. For a mononuclear Cu
complex with typical organic ligands, there are only two significant isotopologues
(63Cu and 65Cu). An extreme case is the cloro-borane radical anion B12Cl12

∙− with
over 16 million isotopologues [127], of which about 2800 have a relative abundance
larger than 0.01. Some programs, such as EasySpin and XSophe, automatically
generate and loop over all significant isotopologues. Occasionally, the same nominal
material from different suppliers might have a different isotope composition. To
allow for this and for isotope-enriched samples, programs such as EasySpin and
XSophe provide interfaces for specifying custom isotope mixtures.

The sH parameters for different isotopes of the same element in the same molec-
ular environment are different and must be interconverted. Hyperfine matrices A
for different isotopes of the same element scale with nuclear gn factors and can
be converted using A2 = A1

gn,2

gn,1
. For hydrogen, this conversion of the hyperfine

coupling between protium (1H) and deuterium (2H) is not always fully accurate, as
there is the possibility of structural and kinetic isotope effects [128] when substi-
tuting 1H for 2H. Nuclear electric quadrupole tensors P can be converted using the
nuclear electric quadrupole moments Qi ∶ P2 = P1

Q2

Q1
.

3.3.2.2 Field Modulation for cw EPR
Essentially all cw EPR spectra are currently recorded using field modulation,
producing the first harmonic of the absorption spectrum. (For a recently developed
alternative, see Chapter 2.) The effect of field modulation can be easily added to a
simulated absorption spectrum in a separate step. One approximate method, termed
pseudo-modulation [129, 130], neglects sidebands and convolves the spectrum with
a modulation function. This function is the Fourier transform of a Bessel function
and can be represented in terms of a Chebyshev polynomial [12]. In cases where
sidebands are resolved experimentally (very high modulation frequencies and/or
very narrow lines), field modulation has to be modeled more completely, including
the modulation frequency [131]. Various analytical expressions for field modulated
lineshapes are available [132–136]. Robinson has published a series of papers on
field modulation [137–139].

3.3.2.3 Frames and Orientations
Each second-rank tensorial interaction quantity in the sH represented by a 3× 3
symmetric matrix, such as the tensors P and D and the symmetric parts of the
matrices g and A, possesses a frame – called the eigenframe or principal-axes frame
(PAF) – in which it is diagonal. This frame has a fixed orientation relative to the
molecular structure of the spin center. The PAFs of different tensors of the same
spin center are generally not collinear. In order to build the matrix representation
of the sH, all tensors have to be represented in the same frame. Commonly, an
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arbitrary frame fixed relative to the molecule is chosen and called the molecular
frame (MF). It is usually chosen to be collinear with molecular symmetry axes or
with the PAF of one of the tensors, for example, the one dominating the energy or
the one most anisotropic.

The orientation of a tensor in the molecule can then be described by the
orientation of the tensor PAF relative to the MF. The rotational transformation of
the PAF to the MF can be represented in several ways: (i) by a set of three Euler
angles, (ii) by a full 3× 3 rotation matrix (direction cosines matrix, DCM), (iii) by
a rotation axis and a rotation angle [140], and (iv) by quaternions. In publications,
it is preferable to give the full DCM. Care has to be exercised when using Euler
angles, as there are several possible conventions. In EPR and NMR, the prevalent
one is 𝑧𝑦𝑧 [67, 75, 105, 108, 141–144]. The three Euler angles (𝛼, 𝛽, 𝛾) apply to the
rotation of the tensor PAF first by angle 𝛼 around the z axis, then by 𝛽 around
the resulting y axis, and finally by 𝛾 around the resulting z axis to bring the PAF
into coincidence with the MF. This is a passive rotation (transformation of frames,
change of representation) that does not rotate the tensor and must be distinguished
from an active rotation that rotates the tensor [145]. Tensors of any rank can be
rotated and transformed using Wigner rotation matrices [146]. In EPR, quaternions
have been useful in modeling restricted anisotropic rotation diffusion [147] and in
generating Brownian trajectories for nitroxide EPR simulations [148].

In a powder sample, spin centers are randomly and uniformly oriented in space
relative to the spectrometer reference frame. This reference frame is called the lab
frame (LF). Conventionally, the LF z axis is defined parallel to the static field B0,
and the LF x axis is along the linearly oscillating microwave B1 field.

If the spin center is static, simulations are commonly carried out in the MF. In
that frame, the only sH parameter that changes from spin center to spin center
in a powder or frozen solution sample is the orientation n of the static magnetic
field BT

0 = B0(nx, ny, nz)T. The sH and its matrix representation can be written as a
linear combination

H = F + BT
0 G = F + B0(nxGx + nyGy + nzGz)

where x, y, and z are the MF axes. In this form, the matrices F, Gx, Gy, and Gz do
not depend on the magnetic field orientation and can be precomputed and then
reused during a powder simulation, resulting in substantial time savings. Many
programs take advantage of this approach.

In some non-static cases, most importantly in the presence of rotational dynam-
ics, it is more convenient to carry out the simulation in the LF. There, the orientation
of the external fields is fixed, but all tensors reorient and are rotated from spin
center to spin center. To handle tensors in the LF most efficiently, they are best
represented via their ISTO components and rotated via Wigner rotation matrices.
Methods for simulating EPR spectra with rotational dynamics are discussed later
in the chapter.
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3.4
Static cw EPR Spectra

In this section, we summarize methods for the simulation of cw EPR spectra of
ordered and disordered systems such as crystals, powders, glasses, and frozen
solutions in the low-microwave power limit. In these types of samples, the spin
centers are immobile. Therefore, the regime is called the rigid limit. Since dynamic
processes are absent, the equations of motion are not necessary. Although they can
be used [149], they are not required. Only the energy eigenstates of the sH need to
be computed. We first discuss orientational properties of the sample, then discuss
the various methods for computing field-swept spectra, and lastly cover frequency
sweeps, inhomogeneous broadenings, and simulation artifacts.

3.4.1
Crystals and Powders

Crystals and powders differ in the nature of the orientational distribution of the
spin centers in the sample. While the former have an orientational distribution
that consists only of a small finite set of discrete orientations, the latter have almost
continuous distribution of orientations. This difference means that EPR spectra of
powders are much more demanding to simulate.

3.4.1.1 Crystals
Dedicated methods of analysis for single-crystal EPR data date back to the early
days of EPR [150–153]. The relation between crystal symmetry and EPR spectra
has been reviewed in great theoretical detail [154]. Two levels of symmetry have
to be distinguished: (i) the space group of the crystal and (ii) the molecular
symmetry group within the asymmetric unit (molecule, protein) of the crystal. In
full powder averages, both the crystal symmetry and the molecular symmetry can be
neglected.

On the basis of their point group and their translational symmetry, crystals
belong to one of 219 different space groups. In spatially homogeneous static and
microwave magnetic fields, EPR spectra are invariant under translation of the spin
center; therefore, only the 32 crystallographic point groups underlying the space
groups are relevant [154]. In addition, the EPR spectrum of a crystal is invariant
under spatial inversion (substituting B with −B in the sH does not affect the
set of its eigenvalues), so that the spectra of a crystal of a centrosymmetric point
group (e.g., D2h) and any of its non-centrosymmetric subgroups (e.g., Cs or D2) are
identical. This is analogous to X-ray crystallography, where the diffraction pattern
is inversion symmetric. Owing to this inversion symmetry, the 32 point groups fall
into 11 Laue classes, each containing a centrosymmetric point group (Ci, C2h, D2h,
C3i, D3d, C4h, D4h, C6h, D6h, Th, and Oh) and its non-centrosymmetric subgroups.
EPR can only distinguish between the 11 Laue classes. The number of asymmetric
units in these classes range from 1 to 16. Only the smallest Laue class (space groups
P1 and P1, point groups C1 and Ci) has a single asymmetric unit per unit cell. A
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crystal of any other Laue class in a general orientation (magnetic field not along any
symmetry axis or in any symmetry plane) gives an EPR spectrum that is an overlap
of multiple spectra from identical, but differently oriented spin centers. The terms
single-orientation and single-crystal should therefore be carefully distinguished.

While the crystallographic point group determines the number and orientations
of the asymmetric units in the unit cell of the crystal, each asymmetric unit
(molecule, protein) might house one or more equivalent or nonequivalent spin
centers. The asymmetric unit itself can have non-crystallographic symmetry such
as fivefold rotational symmetry. This molecular symmetry can increase the line
multiplicity and complexity of the crystal EPR spectrum.

3.4.1.2 Partially Ordered Samples
Between the two limiting cases of single crystals with discrete orientational order
and powders or frozen solutions with complete uniform orientational disorder,
there exist systems with partial orientational order. These comprise liquid crystals
and solid stretched films. In these, molecules and spin centers can have an orien-
tational distribution that is continuous but not uniform, certain orientations being
more probable than others. The spin center orientation 𝛺 = (𝜙, 𝜃, 𝜒) is described
relative to a frame fixed with the liquid crystal or film geometry (the director frame),
and the anisotropic orientational distribution is commonly described by a function

of the form P(𝛺) = exp
(

−U(𝛺)
kBT

)
where U(𝛺) is an ordering (pseudo)potential, kB is

the Boltzmann constant, and T is the temperature. U(𝛺) can be an arbitrary func-
tion of orientation [155]. A very simple and common form is the axial Maier–Saupe
potential based on the second-order Legendre polynomial U(𝛺) = −kBT 𝜆(3cos2𝜃−1)

2
with the potential coefficient 𝜆. The axial order can be quantified by the order

parameter S2,0 =
⟨ (3cos2𝜃−1)

2

⟩
, which ranges between −1∕2 and +1.

3.4.1.3 Disordered Systems and Spherical Grids
The orientation of a spin center in space relative to the spectrometer can be
described by a set of three tilt angles 𝜙, 𝜃, and 𝜒 (Euler angles). In disordered
systems such as powders, glasses, and frozen solutions, these orientations are
randomly and uniformly distributed. Only 𝜙 and 𝜃 are necessary to specify the
orientation of B0 in the MF. Therefore, the transition fields are independent of the
third angle, 𝜒 . However, 𝜒 is required to determine the orientation of B1 in the
MF and thereby the transition probability.

To simulate a powder spectrum, a three-angle integration must be performed.
For cw EPR spectra, the integral over the third angle 𝜒 can be performed analytically
[1, 12, 156, 157]. For pulse EPR spectra, any third-angle anisotropy of the transition
matrix elements that affect the pulse propagation operators has to be integrated
numerically. Often, it is neglected.

The integral over the first two tilt angles 𝜙 and 𝜃 is usually approximated by
a summation over a finite set of orientations (𝜙k, 𝜃k). These orientations can be
represented as a spherical grid of points (knots) on the unit sphere. The spectrum
of the sH is invariant under inversion of the magnetic field in the sense that H(B)
and H(−B) have identical sets of eigenvalues. Therefore, the (𝜙, 𝜃) integration can
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be limited to four octants of the unit sphere (e.g., the upper hemisphere with
𝜃 ≤ 𝜋

2
). Additional symmetries in the sH allow restriction of the integration range

to two or one octants, or even to a quarter of a meridian, resulting in additional
savings in computation time [12].

In simple cases, it is possible to derive closed-form analytical expressions for the
overall powder spectrum. Several authors published and applied such expressions
for axial and orthorhombic systems [158–164]. Much of this work is based on earlier
results by Kneubühl [158]. More recently, analytical solutions for triplet spectra
based on path integrals along field isolines in a ternary orientational diagram have
been derived [165].

Since the computation of the EPR spectrum for a given orientation is time con-
suming, powder simulation methods try to minimize the number of orientations
needed to compute the powder spectrum. Many different schemes for spherical
grids have been proposed and studied over the years, with the hope of finding one
that is optimal in terms of giving the fastest convergence to the correct powder
spectrum as a function of the number of orientations. The performance of various
integration grids [166] have been extensively compared [12, 167, 168]. Despite this
effort, no grid has proven to be consistently superior. It appears that any grid that
has a reasonably uniform point density over the unit sphere is about equally effi-
cient, as long as proper weighing factors based on approximate or exact Delaunay
triangles or Voronoi cells are included [1]. The differential efficiency of similar
grids often depends on the particulars of the sH.

Spherical grids can be either analytical (orthogonal or non-orthogonal), randomly
generated, or numerically optimized. The simplest possible grid is rectangular,
where 𝜙 and 𝜃 are varied independently in fixed increments. This grid has very
nonuniform density with crowding at the poles. It was very common in the early
days of EPR simulation. Grids based on randomly generated points [169] are very
inefficient.

One of the first analytically constructed latitude–longitude grids published
steps 𝜃 in constant intervals and adjusts the number of points on the latitude
circle (constant 𝜃) [37]. With increasing distance from the north pole (𝜃 = 0),
an increasing number of points were placed on the latitude circles. This grid is
commonly referred to as igloo grid [37, 170, 171], although igloos, the snow houses
built by the Inuit, are usually constructed in a spiral form.

Sophe [17] and EasySpin [1] use a simple triangular latitude–longitude grid. Its

grid points (over one octant) are obtained from 𝜃k,l =
(

k
M

)(
𝜋

2

)
and 𝜙k,l =

(
l
k

)(
𝜋

2

)
with 0 ≤ k ≤ M and 0 ≤ l ≤ k. Essentially, as 𝜃 is increased in equal steps from
the pole to the equator, one 𝜙 grid point is added for each 𝜃 step. This grid was
originally introduced in meteorology in the 1960s [172]. It is well suited for global
and local angular interpolation [17].

Several grids consisting of one or more spirals over the unit sphere have been
used in EPR and other areas. One such grid employed in EPR uses numerical
optimization to determine the position of the grid points on the spiral [35, 173],
but it has been shown that these can be found from explicit expressions [168].
This spiral grid has also been used for DEER simulations [174]. Another spiral grid



3.4 Static cw EPR Spectra 83

with very uniform density is the spherical Fibonacci grid [175–177], whose planar
version describes the arrangement of the seeds in a sunflower head.

Other spherical grids include icosahedral [178, 179] and octahedral [180] grids,
the Zaremba–Conroy–Wolfsberg scheme [60, 181], numerically optimized grids
based on electrostatic repulsion between grid points [167] and similar metrics, and
an iteratively generated grid [182]. In NMR powder simulations, Gaussian spherical
quadrature methods have been applied [183].

Quantum chemical (QC) calculations based on density functional theory (DFT)
also employ angular grids as part of a numerical integration over three-dimensional
(3D) space [184]. Gaussian and ORCA, two QC software packages that are widely
used in EPR, implement Lebedev grids. Lebedev grids are also extensively used in
NMR simulations [185].

An iterative method was proposed that starts with a low number of orientations
N to approximate the powder spectrum and then doubles N in each iteration [186].
With this method, convergence can be easily assessed automatically.

The problem of powder integration is still an area of active research, with new
grids and integration methods continuing to appear [187–192].

One method to avoid calculating transition fields explicitly for many orientations
is to leverage already computed orientations by angular interpolation. Interpolation
schemes can be local [157, 193], global, or a combination thereof [12, 17]. Interpola-
tion functions can be linear or cubic (Hermite splines, monotonic Fritsch splines).
The spiral grid can be combined with one-dimensional (1D) interpolation along the
spiral [35]. Two-dimensional (2D) interpolation over small triangular or rectangular
patches of solid angle has been used as well [180, 193]. EasySpin uses bivariate
cubic tensor product splines [1]. The SOPHE interpolation scheme combines a
global cubic interpolation with an efficient local linear interpolation [17].

A method that utilizes already computed orientations maximally is the triangle
projection method due to Ebert and Alderman [180, 194]. In this approach, the
transition fields and intensities calculated for three close orientations are used to
construct an analytical surface for the transition fields within the solid-angle triangle
determined by the three orientations. This surface is then analytically projected
into the field domain, yielding a triangle-shaped subspectrum. Combined with a
Delaunay triangulation of the original grid, this greatly increases the convergence
rate of powder simulations. For axial spectra, the projection method operates
with spherical zones and is very efficient. EasySpin implements the projection
method [1].

Yet another trick to speed up convergence rate as a function of the number of
orientations utilizes the gradient of the transition fields with respect to orientation
(𝜃 and 𝜙) to compute an additional artificial line broadening that is applied to the
lines of each orientation. For orientations where the transition fields are strongly
orientation dependent (e.g., between principal axes), the resulting smoothing is
strong. For orientations with vanishing gradients, that is, along principal axes of
tensors, or at extra absorption directions [195], the smoothing is minimal. This
gradient smoothing is implemented in EasySpin [1], sim [39, 40], and XSophe,
where it is termed the mosaic misorientation linewidth model [22].
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3.4.2
Field-Swept Spectra

In field-swept cw EPR, the Zeeman terms of the sH change during the experiment.
This means that spectral simulation requires more than just a single diagonalization
of the sH. The main computationally intense task of any rigid-limit simulation
is the determination of the transition fields and transitions intensities for each
orientation. A transition field is the external magnetic field value at which two
levels |u⟩ and |v⟩ are in resonance such that the applied microwave can induce a
transition: |Ev − Eu| = ℏ𝜔mw. In the following, we summarize the main classes of
methods available, starting with the most accurate and involved (eigenfields) to the
least accurate and fastest (perturbation theory).

3.4.2.1 Eigenfield Method
The problem of finding transition fields can be very elegantly and compactly formu-

lated as an eigenproblem in Liouville space [196–199]. The super-Hamiltonian ̂̂H

is separated into field-independent and field-dependent contributions, ̂̂H = ̂̂F + B ̂̂G

with the zero-field superoperator
̂̂
F = F ⊗ 1 − 1⊗ FT and the Zeeman superoper-

ator ̂̂G = G⊗ 1 − 1⊗GT. The Liouville-space eigenfield equation is
̂̂
F′Z = B ̂̂GZ,

with
̂̂
F′ = 𝜔mw

̂̂I − ̂̂F. The eigenvalues B represent the transition fields, and the
associated eigenvectors Z contain |u⟩ and |v⟩, the two states involved in the tran-
sition. The associated matrix equation is a general eigenvalue problem, where the

representations of
̂̂
F′ and ̂̂G are N2 × N2 matrices for an N-level spin system.

If the microwave quantum is larger than the maximum zero-field splitting

EN(0) − E1(0), then
̂̂
F′ is positive-definite and can be inverted and the eigenfield

equation reduces to an ordinary eigenproblem
̂̂
F′−1 ̂̂GZ =

(
1
B

)
Z, whose eigenvalues

are the inverse transition fields [196]. To reduce the computational effort for large
systems, a perturbational treatment of the eigenfield equations was introduced [84,
198]. A method for obtaining the eigenfields via the characteristic equation [200]
has been proposed as well. It has been shown that the eigenfields ansatz can be
used to formulate a Hilbert-space differential equation that can be solved using the
filter diagonalization method [201]. The method is, however, limited to situations
with EN(0) − E1(0) < ℏ𝜔mw, which are easier to solve by other methods.

Transition probabilities can be calculated from the eigenvectors Z in a very simple
manner [196]. However, due to the large dimensionality of the superoperator space,
it is often worthwhile to forgo computation of Z. Instead, the transition probabilities
can be calculated for each transition field obtained from the eigenfield equation by
solving the Hilbert-space energy eigenproblem. Another advantage of this hybrid
method [200, 202] is that the frequency-to-field conversion factor [157, 203] (see
below) can be obtained more easily.

Although the matrices involved in the eigenfield equation are very large, they are
generally sparse. It is feasible to employ this method for systems with high spins or
many coupled electron spins in case the energy level diagram gets so complicated
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that the Hilbert-space matrix diagonalization-based energy level diagram modeling
as discussed below requires an excessive number of diagonalizations. In general,
because of its mathematical and implementational simplicity, the eigenfield method
can serve as a reference method for other approaches.

3.4.2.2 Matrix Diagonalization
All methods except the eigenfield method compute transition fields in two steps.
They first determine energy levels and possibly states at one or several pre-chosen
magnetic field values using a range of possible methods (matrix diagonalization,
perturbation theory, or a combination thereof), and then use these energies to
obtain the transition fields by interpolation or extrapolation along the field axis.
Some methods combine these two steps, and others iterate between them.

To obtain the energy eigenstates and their energies for a given external field,
the sH matrix can be numerically diagonalized, and transitions can be determined
by comparing all energy level pair differences to the microwave quantum [86,
157, 186, 204–206]. In principle, for a field sweep, this diagonalization has to be
repeated for each point along the swept field range. In this wasteful but sure-fire
brute-force method, typically on the order of 1000 diagonalizations per spectrum
per orientation are required. This is prohibitive for powder spectra.

The number of diagonalizations can be reduced by combining matrix diagonal-
ization for a limited subset of field values (knots) with interpolation, extrapolation,
or root-finding along the field axis. Methods based on root-finding algorithms [2,
81, 157, 186, 207–209] can locate one transition field per state pair within a narrow
field range. Another method minimizes via least-squares fitting the square of the
deviation between the energy difference of two levels and the microwave quantum
[206, 210–214]. The simplest methods for the computation of transition fields
use energies at one field only, combined with linear or quadratic extrapolation
based on a Taylor-series expansion or perturbation theory [49, 193]. When the
sH is diagonalized at multiple fields, instead of diagonalizing at each field value
independently, eigenvalues and eigenvectors of the sH for one field can also be
obtained by homotopy [19, 212, 214] or extrapolation [215] starting from the results
from a nearby field.

The method implemented in EasySpin models the energy level diagram over a
desired field range using an adaptive iterative bisection and interpolation algorithm
[216]. Initially, H is numerically diagonalized at the minimum and the maximum
of the requested field range, and an approximation of the energy level diagram
is constructed by Hermite cubic spline interpolation. Next, H is diagonalized at
the center field and the resulting eigenvalues are compared to the interpolated
ones. If the difference is above a given threshold (typically a few parts per million
of the microwave energy), the left and right field segments are interpolated and
diagonalizations done at their centers. This procedure is repeated recursively
until all segments are accurately modeled by splines. Transition fields are then
determined from the spline model of the energy level diagram. The method
is robust and adapts the number of diagonalizations to the complexity of the
energy level diagram. EasySpin’s methods were inspired by a bisective root-finding
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algorithm [186, 209]. Other nonadaptive interpolation methods use cubic splines
[39, 217] or Chebyshev polynomials [10]. Sophe subdivides the field search range
into segments, diagonalizes the Hamiltonian once per segment, and then uses
second-order perturbation theory to locate transition fields [24].

Once the energy level diagram is modeled by splines, it has to be searched for
transition fields. In principle, this involves searching all N(N−1)

2
unique pairs of

levels for an N-level system. Most of these searches are in vain, as most level pairs
do not give significant EPR lines because they are either off resonant over the
entire field range or have negligible transition matrix elements. A simple heuristic
procedure, termed transition preselection, can be used to narrow down the search
range of level pairs [1]. It is based on the observation that the same subset of
level pairs usually gives nonzero transitions for all or most orientations. It involves
precomputing energies and transition intensities at the center field for one or a
few orientations. From this set, the subset of level pairs with nonzero transitions
is selected, and the subsequent field searches for the full powder simulation can
be limited to this subset. The method, however, runs into problems for large field
sweeps with significant zero-field or hyperfine interactions, where the center-field
states are not representative of the entire field range. It should be avoided in systems
with multiple nuclei with similar hyperfine coupling, as strongly field-dependent
state mixing might occur.

No matter how they determine transition fields, all the above methods use
matrix diagonalization. There are numerous diagonalization libraries available that
implement very efficient algorithms for computing all eigenvalues and eigenvec-
tors of a Hermitian matrix [218, 219]. However, algorithms differ in efficiency
depending on whether the matrix is dense or sparse, on whether eigenvalues only
or eigenvalues and eigenvectors are required, and on whether all or only a few
of the lowest eigenvalues are requested. Efficient large-scale algorithms (Arnoldi,
Lanczos, Jacobi, Davidson) are available [220].

There has been much concern about energy level crossings as a function of
field magnitude and orientation and the associated ambiguity in labeling the states
involved. Several methods of assigning states left and right of the crossing by
tracking or Jacobi diagonalization have been proposed [35, 157, 193, 209, 214].
However, since crossings occur only at isolated points within the symmetry-unique
subset of field orientations [221], these procedures are not necessary. Levels can be
uniquely sorted and labeled in order of increasing or decreasing energy.

If the microwave quantum is smaller than the largest zero-field gap, |EN(0) −
E1(0)|, then there can be multiple transition fields between pairs of levels that
feature anticrossings [196]. For such level pairs, the number of transitions as a
function of magnetic field orientation is not a constant. In a powder spectrum,
the resulting looping transitions are often present only over a subset of field
orientations, coalesce at orientations where the anticrossing gap matches the
microwave quantum, and vanish for the rest. This makes interpolation more
involved and leads to complications in the modeling of line broadenings. Accurate
treatment of such looping transitions is more difficult [212, 217].
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In some systems, for example, Ni(II) with S = 1, two-photon (‘‘double-quantum’’)
transitions are visible. The theoretical basis of these transitions has been discussed
in several publications [10, 205, 222], but they are not routinely incorporated in
simulations.

3.4.2.3 Perturbation Theory
When one interaction in the spin Hamiltonian dominates, perturbation theory
can be used to compute the resonance field positions. Methods that treat the
electron Zeeman interaction as the main interaction, the hyperfine interaction
as perturbation, and neglect the nuclear Zeeman and the nuclear quadrupole
interaction have been used since the early days of EPR both for solids and
liquids simulations [223]. The nuclear Zeeman and quadrupole interactions can be
included in a second step using sequential perturbation theory.

When the three nuclear interactions (hyperfine, Zeeman, quadrupole) are
of similar strength, the treatment is more complicated. Expressions that treat
hyperfine and nuclear Zeeman interaction on an equal footing have been given
by Lefebvre and Maruani [224], Iwasaki [225], and others [226, 227]. When
equivalent nuclei are present, transformation of the spin Hamiltonian into a
coupled representation is required [112, 228]. In the presence of multiple nuclei,
the inclusion of internuclear cross terms might be necessary [226]. Byfleet has
developed a method based on seventh-order perturbation theory [229] applicable
to a fairly general spin Hamiltonian. Generalized operator transforms based
on methods developed by Bleaney and Bir can be used to derive perturbational
expressions for anisotropic systems [230–232].

A specific application case for perturbation theory that has received significant
attention is mononuclear Mn2+ (S = 5

2
). Its sH has isotropic g and A, but a signif-

icant anisotropic zero-field splitting. Expressions for eigenenergies and transition
fields at second- and third-order levels of perturbation theory have been published
many times [231, 233–237]. Perturbation theory for coupled spins using a full
anisotropic spin Hamiltonian has been developed for transition metal dimers [238,
239], for transition metal–nitroxide complexes [240], and for dipolar-coupled pairs
of radicals [241, 242].

From a software perspective, there are several problems with perturbation theory:
(i) Most expressions are scalar and long. The resulting code is usually error prone
and very difficult to debug. (ii) Scalar perturbational expressions are not general, as
they almost always are limited to specific systems such as one electron spin and a
certain number of nuclei, and to specific symmetries. In fact, many early programs
differed mainly in the number of spins and symmetry of interaction matrices that
were supported. (iii) Perturbation theory has inherently limited scope with respect
to the relative strengths of the various interaction parameters. The accuracy of the
simulated spectrum is a function of this, which is not a desirable software behavior
from a user perspective. (iv) Lastly, very few programs check the validity of the
perturbation theory approximations for the given set of input sH parameters and
leave the user in the dark about the accuracy of the computed spectrum. However,
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with proper checks, the main advantage of perturbation methods – speed – can be
harnessed for specific systems.

3.4.2.4 Hybrid Models
If the interaction strengths in a spin system are such that the spins fall into
two distinct groups, one with strong interactions and one with weak interactions,
hybrid methods can be used. These proceed in two steps. First, they utilize matrix
diagonalization for the subset of strongly coupled spins to obtain energy levels and
states for the corresponding subspace. Then, they apply a perturbational theory
approach to calculate the splittings resulting from the subset of weakly interacting
spins. Ligand nuclei in transition metal complexes can be treated in this manner
[186]. Hybrid methods have been applied to di-manganese systems [243], where the
electron spins are treated exactly and the 55Mn nuclei perturbationally. Compared
to full matrix diagonalization methods, hybrid methods provide a considerable
saving of computer time.

3.4.3
Transition Intensities

Generally, cw EPR spectra are acquired with non-saturating levels of microwave
power. Then, first-order time-dependent perturbation theory and Fermi’s Golden
Rule are applicable. The intensity I𝑣𝑢 of a transition between initial state |u⟩ and
final state |v⟩ in a field-swept EPR spectrum is determined by three factors.

I𝑢𝑣 ∝ |⟨v|H1|u⟩|2 ⋅(d𝛥𝐸
dB

)−1

⋅ (pu − pv)

The first factor is the transition probability, the square of the transition matrix
element of the microwave sH, H1 = 𝜇BBT

1 gS. If the state vectors of the two states |u⟩
and |v⟩ are known (e.g., from matrix diagonalization or perturbation theory), then
this matrix element can be evaluated numerically. Within the assumptions of first-
order perturbation theory with dominant Hez, states can be written as products of
electron and nuclear substates, and the matrix element can be evaluated analytically.
The expression is [225]|⟨v|H1|u⟩|2 = (𝜇BB1|G|)2 ⋅ |⟨mS,v|STn|mS,u⟩|2 ⋅ |⟨mI,v|M𝑣𝑢|mI,u⟩|2
where G is the effective g-factor along the direction of B1. The second factor is the
spin transition moment squared. To first order, its value is S(S + 1) − mS(mS + 1)
for the allowed transition mS ↔ mS + 1. The last factor is a nuclear overlap matrix
element and is analogous to a Frank–Condon factor [244]. It is central to ESEEM
spectroscopy (see below).

The second factor in the expression for I𝑣𝑢 is the frequency-to-field conversion
factor. It accounts for the fact that the spectrum is field-swept and not frequency-
swept. It was originally discovered by Aasa and Vänngård [203] in 1975 for spin- 1

2

systems with anisotropic g, where it is proportional to 1
g
. van Veen [157] gives

the general expression. The presence of this factor implicitly assumes that unit-
area absorption lines are employed for modeling line broadenings [157]. It was
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extensively discussed by Pilbrow [170, 245, 246]. Neglecting this factor can lead to
errors for half-field transition intensities (used for distance measurements [247]),
relative linewidths in systems with large g anisotropy, and in spin quantitation.
The only systems where the factor does not affect the spectral shape are spin- 1

2
systems with essentially isotropic g-matrix and only fully allowed transitions, for
example, organic radicals. When this factor is used, it is crucial to use a frequency-
domain (FD) line broadening model, and not a simple field-domain convolutional
linewidth. If not, wrong intensities will result, for example, for half-field transitions
in triplets.

The third factor in I𝑣𝑢 represents the polarization of the transition. pu and pv

are the populations of the initial and final state, respectively. This difference is
positive and leads to absorptive lines if pu > pv, which is the case under thermal
equilibrium for Eu < Ev. The thermal-equilibrium Boltzmann population is given

bypu =
exp( −Eu

kBT
)

∑
q exp(

−Eq
kBT

)
. For a spin- 1

2
system with isotropic g value, the thermal polarization

is Δp = p+ 1
2
− p− 1

2
= tanh

(
𝜇BBg

2kBT

)
. In the high-temperature limit kBT ≫ 𝜇BBg

2
, this

simplifies to Δp = 𝜇BBg

2kBT
. Nonthermal equilibrium situations, for example, spin-

correlated radical pairs or photoexcited high-spin states of organic molecules, can
be easily accommodated.

Closed-form analytical solutions for anisotropic transition probabilities have been
given for many cases: axial g tensor [248], forbidden hyperfine transitions [249], and
rhombic g tensor [203, 225, 250–254]. For powder spectra, the transition intensity
can be integrated analytically over the third Euler angle even for the case of a
rhombic g-matrix, yielding compact expressions [225, 248, 251, 254]. A different
derivation has been used by Kneubühl and Natterer [255]. With numerically
obtained transition intensities, integration over the third angle can also be carried
out effortlessly [156].

Most solid-state simulations assume non-saturating levels of microwave irradia-
tion. In the case of saturation, a more complete theory based on the SLE has to be
used [126]. Saturation is important in the context of saturation-transfer EPR, where
a detailed theory has been developed by Dalton and Robinson [256–259].

3.4.4
Isotropic Systems

For systems that are isotropic (either intrinsically, or by virtue of sufficiently
fast rotational averaging), the spin Hamiltonian simplifies considerably. In each
sH term, only the isotropic average survives, leaving isotropic g and A matrices,
isotropic gn factors, and isotropic exchange. Zero-field splitting terms and the
nuclear quadrupole term average to zero. In general, resonance fields for the
isotropic spin Hamiltonian can be solved using matrix diagonalization, as discussed
in Section 3.4.2. However, in the case of one electron spin S = 1

2
and one nucleus

with I ≥
1
2
, two more efficient approaches are possible: (i) Breit–Rabi solution and

(ii) perturbation theory.
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The Breit–Rabi formula [260–262] is an exact explicit expression for the energy

levels E(mS,mI) of a (S, I) =
(

1
2
, 1

2

)
system. Using this, the resonance condition

E
(
+ 1

2
,mI

)
− E

(
− 1

2
,mI

)
= ΔE(mI) = ℏ𝜔mw can be written in the implicit form

B = f (B) and solved for the transition field B using a fixed-point iteration (Bk+1 =
f (Bk)) with the starting resonance field B0 obtained from first-order perturbation
theory. The solutions converge to numerical accuracy within a few iterations, even
for very large hyperfine couplings. This is computationally superior to perturbation
expressions and is the default method in EasySpin [1]. Fixed-point iterations can
be applied to any situation where the resonance field is only known as an implicit
function of the microwave frequency and the spin Hamiltonian parameters and can be
formulated as B = f (B). This applies to many perturbation expressions and has
been applied, for example, to bisnitroxide spectra [242].

For isotropic systems, many programs implement standard perturbation theory.
EasySpin provides such methods up to fifth order. The expressions are based
on solving the equation ΔE − ℏ𝜔mw = 0 with a Taylor expansion in aiso of the
Breit–Rabi expression for ΔE. For a desired perturbation order n, the resulting
equation is multiplied by Bn−1 and truncated after the an

iso term [263]. This yields
a polynomial in B, whose roots are the resonance fields and can be determined
using any root-finding algorithm, for example, the Newton–Raphson method with
B = ℏ(𝜔mw−mIaiso)

𝜇Bg
as the starting value. These methods can be applied to systems

with multiple nuclei as well, as long as cross terms are properly taken into
account [226]. Since it is so easy to solve the Breit–Rabi equation, perturbation
expressions have mostly only didactic value.

3.4.5
Line Broadenings

There are two types of broadening: homogeneous and inhomogeneous. Homo-
geneous broadening is due to the limited lifetime of the excited states populated
by microwave absorption. In solid-state EPR, this broadening is mostly negligible
compared to the second type, inhomogeneous broadening.

Inhomogeneous broadening is due to site-to-site heterogeneity in the sH, which
can have several different origins. The first, with the largest effect, is orientational
disorder (different spin centers have different orientations) and leads to powder
spectra. It needs to be treated explicitly and was discussed in Section 3.4.1.3.

The second type of inhomogeneous broadening is due to small and unresolved
couplings between the electron spin(s) described in the sH and spins that are not
explicitly incorporated in the sH. This includes superhyperfine (shf) interactions
to nearby nuclear spins, and dipolar couplings to other electron spins. Different
spin centers experience different magnetic states of spins in the nanoenvironment,
which leads to a multitude of small splittings. Generally, the large number of
couplings results in an overall line broadening.

The third type of inhomogeneous broadening is structural. Parameters in the
sH are (sometimes) sensitive functions of the geometry of the spin center and
its immediate environment. Any static structural disorder, either geometric or
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electronic, will lead to a distribution of magnetic parameters with a finite width.
As a consequence, transition fields are shifted, and the overall spectrum broadens.
Variations in geometric degrees of freedom can include variations in ligand
distances and coordination geometry in a transition metal complex, variations
in the length and orientation of hydrogen bonds in organic radicals, and slight
misorientations in crystals.

3.4.5.1 Dipolar Broadening
When a large number of unresolved couplings due to roughly homogeneously
distributed magnetic moments (solvent nuclei, other spin centers) contributes
to the line broadening, it can be modeled using an FD linewidth tensor that
provides an orientation-dependent linewidth 𝛤 (𝛺) for a Gaussian lineshape. The
FD linewidth can then be converted to the field domain using the frequency-to-field
conversion factor discussed in Section 3.4.3. Various expressions for this linewidth
tensor have been proposed and are being used [1, 23, 170], and none of the forms
appears to be better or worse than the other.

If the dipolar broadening is solely due to weak dipolar coupling to a spin center
at a specific distance from the spin center of interest, the cw EPR spectra can be
convoluted with the dipolar Pake powder pattern. A computational analysis of this
Pake broadening can be used to extract distances in dipolar coupled bisnitroxides
[47, 264].

Occasionally, for accurate analysis of lineshapes in solution, it is important
to explicitly compute the shf splitting pattern and use it as a convolutional line
broadening function instead of a Gaussian function [265].

3.4.5.2 Strains
To model geometric heterogeneity, strain models are used. Site-to-site structural
variations cause corresponding variations of the sH parameters, so that each com-
bination of sH parameter values will have a certain probability density P(g, a, …).
Generally, Gaussian distributions of parameters are assumed. The variations of
different parameters can in principle be correlated.

To include strain broadenings in the simulation, spectra have to be simulated
for many points within the distribution P in parameter space and then integrated.
This is the only viable approach if the parameter distributions are wide. If the
distributions are narrow, the energy levels and the transition fields vary mostly
linearly over the narrow parameter range [170]. For a transition between two levels|u⟩ and |v⟩, the width of the (Gaussian) FD distribution of an sH parameter p
can then be directly converted to a field-domain linewidth using the derivative
of the energy gap with respect to p and the 1

g
factor [1, 12]. The former can

be obtained from the sH and the eigenstates using the Hellmann–Feynman
theorem [266].

Structural heterogeneity of spin centers can lead to a distribution in g values,
for example, in transition metal complexes and clusters as well as in organic
radicals in frozen solution. The resulting distribution of g tensors, g strain, is
often simply modeled by three uncorrelated Gaussian distribution functions of the
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three principal g values. This model works well in many cases, even though it can
miss visible details. A more sophisticated correlated statistical model of g strain
has been developed for metalloproteins by Hagen [267, 268]. Physical models for g
strain based on crystal field theory have been derived and utilized as well [269, 270].

In transition metal complexes, such as in Cu2+, variations in the principal values
of g and A matrices are interrelated [271]. In frozen solution with structural
heterogeneity at the spin center, this leads to correlated g and A strains [272] that
have been included in simulations using a bivariate normal density distribution
function [273, 274].

There has been substantial work on modeling the heterogeneity of the D tensor
in solid-state samples, as the D tensor can be very sensitive to structural features.
The D tensor components were related to the components of the external stresses
via a spin–strain tensor [275, 276]. For general application and without extensive
computational chemistry predictions, this is an overparameterized model. Simple

uncorrelated distributions in the zero-field splitting parameters D
(
= 3

2
Dz

)
and

E
(
= Dx−Dy

2

)
are used extensively [277–280]. In cases where the ratio E

D
(rhombicity)

determines resonance line positions, such as high-spin ferric ions, the strain can
be modeled with a single distribution of that ratio [281, 282]. Joint probability

distributions P(D,E) or P
(

D, E
D

)
using 2D Gaussians (correlated D strain) have

been used as well [38, 283, 284], for example, using complete anticorrelation
between D and E [285]. Closely related to D strain is r-strain, a distribution of the
inter-metal ion distance in dimers that affects the magnetic dipole coupling and
consequently the linewidth [243].

Line broadening in the EPR spectra of solid crystals has been found some-
times to be due to variations in unit-cell orientations (misalignment, mosaicity,
misorientation) [277, 286–288].

3.4.5.3 Lineshapes
For homogeneous broadenings, the Lorentzian function is used. For inhomoge-
neous broadenings, the Gaussian function is most common [6]. They are applied to
the simulated spectrum using convolution [289]. If the broadening is anisotropic,
each single-orientation spectrum is convolved separately. If it is isotropic, a sin-
gle convolution of the final powder spectrum is sufficient. The convolution of
a Lorentzian and a Gaussian function is called a Voigt function. Convolutions
can be performed numerically [290], but other methods are available as well
[291–293] and need to be deployed if many Voigt shapes are required. A popular
approximation to the Voigt lineshape is a linear combination of Lorentzian and
Gaussian functions [294], also called the pseudo-Voigt profile. Other shape func-
tions for inhomogeneously broadened lines include the Holtzmark and Stoneham
lineshapes [6]. Small deviations from the Lorentzian shape due to incomplete
rotational averaging of anisotropies can be modeled by a two-parameter extension
of the Lorentzian function [295]. The Tsallis distribution generalizes Gaussian and
Lorentzian lineshapes [296].
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3.4.6
Frequency-Sweep Spectra

The increased use of wideband frequency-sweep EPR spectrometers up to the
terahertz range has prompted the development of corresponding simulation
methods [297]. Unlike in field-sweep EPR, the Zeeman terms in the sH are constant
during the experiment. Therefore, the computations are more straightforward.
As in the field-sweep case, matrix diagonalization, perturbation theory, or hybrid
methods are applicable. For the transition intensities and linewidths, the same
expressions as for the field-swept case apply, except for one important difference:
The frequency-to-field conversion factor, discussed in Section 3.4.3, is not required.

3.4.7
Simulation Artifacts

There are a number of common artifacts of solid-state simulations that need to be
identified and remedied if present.

1) If the number of orientations in a powder simulation is small, ripples (‘‘simula-
tion noise’’ or ‘‘grass’’) appear in the simulated spectrum. For a given number
of orientations, the severity of these ripples increases with increasing overall
width of the field-swept spectrum. They can be removed by increasing the
number of orientations. Simulation ripples can also be removed via low-pass
filtering using Fourier transformation [267]. Another remedy is to use an
iterative orientational averaging with increasing grid density until convergence
is achieved [186]. Similar ripples can appear experimentally if the powder does
not contain a sufficient number of microcrystallites for complete orientational
averaging. Gradient smoothing [1, 22, 39] and analytical projection techniques
[1, 180, 194] reduce the occurrence of ripples significantly.

2) Simulation programs differ in the implementation of the evaluation of
Lorentzian and Gaussian lineshapes. Since repeated explicit evaluation of
the corresponding expressions are numerically intense, look-up tables are
often used. This can lead to truncation and interpolation errors. If convolu-
tional line broadenings are applied via Fourier transformation, artifacts at the
lower and upper field range limits may occur.

3) Near coalescence points, looping transitions can yield artifacts in powder
spectra in the form of missing spectral intensity that leads to pairs of spuri-
ous peaks. These problems can be alleviated by substantially increasing the
spherical grid density near coalescence points, or by using dedicated methods
[217].

4) Some programs (such as EasySpin) apply transition preselection or screening
procedures before starting a simulation. These procedures attempt to deter-
mine level pairs that will yield transition fields before starting the full powder
simulation, with the goal of discarding level pairs that are never resonant. In
complicated spin systems with high electron spins, high-order operators, or
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large hyperfine couplings, such procedures can miss transitions, and should
be used carefully.

3.5
Dynamic cw EPR Spectra

Many dynamic processes can affect the shape of an EPR spectrum ([65]; see [298]
for an early review). In addition to a variety of spin-relaxation processes, two
types of molecular processes that are of great importance are rotational motion
and chemical exchange. Both require dedicated simulation techniques and can be
modeled at various levels of theory, with different scope and accuracy.

3.5.1
Rotational Diffusion

The random rotational or reorientational motion (tumbling) of spin centers such
as nitroxides in solution can be modeled using the SLE [27, 28, 299, 300] with
a rotational diffusion superoperator. The time scale of the rotational dynamics is
characterized by the rotational correlation time 𝜏c. Based on the relation between
𝜏c and the rigid-limit powder spectral width Δ𝜔, several dynamic regimes are
distinguished: (i) the fast-motion limit (𝜏c essentially 0), (ii) the fast-motion regime
(𝜏−1

c ≫ Δ𝜔), (iii) the slow and intermediate motion regime (𝜏−1
c similar to Δ𝜔

within about 2 orders of magnitude), and (iv) the rigid limit (absence of rotation,
𝜏−1

c = 0).

3.5.1.1 Fast-Motion Limit
Fast-motion limit spectra are isotropic [301]. All anisotropies in the spin Hamil-
tonian are averaged out on the time scale of the EPR experiment. Spectra can be
easily simulated by the isotropic solid-state methods described in Section 3.4.4
by using a spin Hamiltonian with isotropic interaction matrices and tensors.
In the isotropic limit, many of the perturbational expressions simplify consid-
erably. Residual broadenings are due to inhomogeneous (isotropic) hyperfine
couplings, Heisenberg exchange with other spin center such as dioxygen, or
lifetime broadening.

The exponential growth of the number of EPR lines with the number of nuclei
coupled to an electron spin makes simulations in the field or FD by summation
over all possible lines very slow for large spin systems. An alternative is to perform
the simulation in the inverse-field or time domain (TD), where each line can
be represented by a decaying exponential, and the convolutions reduce to simple
multiplications. This Fourier transform method [25, 302–305] assumes a first-order
perturbational regime, that is, that the nuclear spin states do not affect the state of
the electron spin. In this method, the effect of the modulation amplitude can be
incorporated in the inverse domain [25, 305]. An analysis method based on Fourier
transform is the cepstral analysis [306].
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3.5.1.2 Fast-Tumbling Regime
In the fast-tumbling regime, the rotational motion can be treated using pertur-
bational Redfield–Wangsness–Bloch relaxation theory. A detailed derivation with
many references is given in Atherton’s book [143]. On the basis of this theory, the
linewidths can be expressed as polynomials in the nuclear projection quantum num-
bers, mI. Kivelson has developed expressions for several cases [307, 308]. Freed has
presented very general expressions [112]. A diagonalization-free implementation of
Redfield relaxation theory for large spin systems has recently been developed [309].

3.5.1.3 Slow-Tumbling Regime
In the slow and intermediate motional regimes, the reorientational motion of the
spin label is on a time scale similar to the EPR time scale, and the EPR spectrum is
broadened. In these regimes, perturbation treatments have to be abandoned, and
a more complete theory has to be employed.

Simulation methods for this regime differ in how the different levels of orienta-
tional dynamics are treated and can use either deterministic or stochastic models
[310]. Deterministic models are based on atomistic molecular dynamics (MD)
simulations and are able to treat complex local and internal dynamics. Stochastic
dynamics (SD) models describe the reorientational motion as rotational diffusion
of a rigid rotor and can account for simple local or global rotational dynamics.

One stochastic model, jump diffusion, assumes rotational diffusion via random
jumps between multiple equivalent sites differing in the orientation of the spin
center [27, 311]. This has been observed in a few cases [312]. A stochastic memory
function approach that assumes random instantaneous rotational jumps by a small
angle has been used to model reorientation of spin labels in supercooled water [313].

The most common stochastic model for rotational motion in solution is Brownian
rotational diffusion, a random walk in 3D orientational space [314]. The anisotropy
of the reorientational rate constant 𝜏−1

c due to the nonspherical shape of the spin
center is described by an anisotropic diffusion tensor fixed in the MF. For a spin
center freely diffusing in solution, the local environment is isotropic. On the other
hand, the environment is generally anisotropic for a spin label bound to a protein or
other biomolecule, resulting in preferential alignments and excluded orientations
[28]. In these partially ordered samples, the free energy of the label is a function of
its orientation 𝛺 and is described by an orientational potential U(𝛺). Expressions
for ordering potential have been discussed above.

Simple SD models such as Brownian diffusion in a restricting potential are
accommodated in the SLE by including a rotational diffusion operator [155, 314].
The SLE then describes the joint time evolution of both the quantum spin degrees
of freedom and the classically treated spin center orientation 𝛺 = (𝛼, 𝛽, 𝛾). EPR
spectra are simulated by calculating the low-power steady-state solution of the SLE,
with an equilibrium orientational probability distribution of an ensemble of spin
centers determined by the orientational potential. Very efficient SLE solvers were
developed by Freed and coworkers [27, 299, 311, 315, 316]. A didactic review [28]
summarizes the main features of the approach.
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The orientational distribution of the spin center is represented in a basis of
Wigner functions 𝒟 L

𝐾𝑀
(𝛺) with L = 0, 1, … and −L ≤ K,M ≤ +L, which is, in

principle, of infinite size. For a given spin system, the matrix size and the
computational effort scale with the number of orientational basis functions. The
orientational basis is usually truncated to a subset of functions with L < Lmax.
(The orientational potential is also expressed as a linear combination of a few
low-L Wigner functions.) This basis yields manageable expressions for the matrix
elements of the Liouville superoperator. For accurate simulations, the basis size
needs to be increased with decreasing rotational diffusion rate and increasing
complexity of the potential. In principle, the SLE approach can be used to simulate
a rigid-limit spectrum. However, the basis size required for achieving converged
spectra is large, so that dedicated rigid-limit methods are preferred.

In a basis truncated at Lmax, some of the basis states with L < Lmax are negligibly
populated and can be removed using heuristic pruning techniques, as introduced
by Freed [27, 299]. Similar and more general state space restriction methods have
recently been developed for general spin dynamics simulations [64], as discussed
later.

If the rotationally diffusing spin center is attached to another entity that provides
an orienting potential, not only the local dynamics of the spin center but also the
global dynamics of the latter need to be included in the SLE simulation. Most
commonly, this is observed for nitroxides attached to proteins. With a protein
that provides an ordering potential, the slow-motion spectrum depends on the
orientation of the ordering potential with respect to the external magnetic field.

Two theoretical models are available, MOMD [317] and SRLS (slowly relaxing
local structure) [318]. If the protein is randomly orientationally distributed in the
sample but static on the time scale of the EPR experiment, a powder average has
to be computed. This is called the MOMD model [317]. It can be generalized to
partial static order. If the protein is not static, its rotational dynamics couples to
the rotational dynamics of the spin center and must be included in the simulation.
In the SLE approach, the protein dynamics is also treated stochastically. A second
diffusion operator is added in the SLE, and the orientational distribution of the
protein is described by a second set of Wigner basis functions 𝒟 L

𝐾𝑀
(Ω2). This

SRLS model introduced by Freed [318–320] is a two-body coupled rotor model.
It is implemented in the software available from the Freed group that includes
multifrequency fitting [320, 321]. SRLS is also implemented in the software
E-SpiReS [33]. The model is not only used for spin labels, but also for methyl
dynamics and 15N relaxation in protein NMR [322]. A dedicated program, C++
OPPS, is available [323]. Currently, EasySpin implements the MOMD model for
spin systems with one electron spin and several nuclear spins.

Mostly, SLE simulations have been limited to nitroxides with (S, I) =
(

1
2
, 1
)

.

However, in some cases, the SLE method has been applied to larger spin systems
such as diphosphanyl radicals [324], doubly nitroxide-labeled peptide [325], nitronyl
nitroxides [326], and fullerene-bisnitroxide adducts [327]. Misra [324] has derived
explicit scalar matrix element expressions for the two-nuclei case. The theory of
slow-motional EPR spectra of triplets is theoretically well described [328–330].
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In general, the matrix elements for any spin system can be constructed in a
straightforward manner from the single-spin spherical tensor operators. If the
sH interactions are restricted to zero- and second-order tensors, the sH Liouville
operator can be decomposed into 26 static rotational operator components [309].

As a more general alternative to solving the SLE for a stochastic model, EPR
spectra can be directly computed from sets of explicit trajectories that describe
the change in time of the orientation of the spin center in space. A trajectory
determines the time dependence of the magnetic parameters and therefore the
EPR spectrum of a moving spin center. This method is applicable to trajectories
obtained from both stochastic and deterministic models.

From a trajectory, the time evolution of the magnetization following a 90◦ pulse
is computed using density matrix or Bloch magnetization vector propagation [147,
331, 332]. From the resulting FID, the EPR spectrum is obtained by Fourier
transformation. To generate a converged spectrum, FIDs of a set of trajectories
generated from a range of possible initial orientations of the spin label have to be
combined. The appropriate time resolution of the trajectories is determined by the
spectral width via the Nyquist criterion. The length of the trajectory is determined
by the required spectral resolution and has to be of the order of the transverse
relaxation time T2 to yield accurate EPR spectra.

The computation of SD trajectories is fast, and the number and length of
trajectories required for accurate spectral simulations are easily obtained. Stochastic
Brownian dynamics trajectories were introduced by Robinson et al. [331] and widely
applied [242, 333]. On the other hand, MD trajectories [334, 335] are computationally
significantly more demanding. The expense of computing long MD trajectories
can be avoided. Accurate simulations can be achieved from short MD trajectories
generated over the decay time of the auto-correlation function of the motion [336,
337], or by deriving an effective orientational potential from short MD trajectories
and then using it to generate SD trajectories [333] or to solve the SLE [338]. A
single MD trajectory can be reused several times by rotation or resampling. In
general, despite being much slower than the SLE approach, trajectory methods
are superior in the complexity of dynamics that can be modeled [339]. Global
dynamics cannot rely on MD simulations, so stochastic models are used [148].
The methodology for simulating slow-motional EPR spectra of two coupled spin
labels attached to the same macromolecule is not as established as for single labels.
There exist methods based on the SLE [325] and on trajectories [242] for the simple
case of a tumbling protein with two rigidly attached labels. MD trajectories have
been used to simulate spectra from proteins labeled with two nitroxides [340] and
to compare spin relaxation times from explicit dynamics to those obtained from
Redfield–Wangsness–Bloch relaxation theory [341]. Implicit solution methods for
the SLE have been investigated [342].

For multinuclear spin systems, perturbation treatments can be applied if one
hyperfine coupling anisotropy dominates and the hyperfine anisotropies of the
others are so small that they are in the fast-motion range. In this case, a post-
convolution technique can be used [343, 344]. It has been implemented in a
program for copper spectra [345] and is also available in EasySpin.
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Computationally, the main challenge with SLE methods is the matrix size.
It is the product of the sizes of the spin basis (N2 for a full basis) and the
orientational basis. The spin space dimension increases exponentially with the
number of spins. In addition to pruning the orientational basis, as mentioned
above, the spin space can be restricted in the high-field limit [27]. More general
spin space truncation methods are applicable as well [64], but are not implemented
in dedicated slow-motion EPR simulation programs.

3.5.2
Chemical Exchange

Chemical exchange summarizes situations where dynamic transformations
between different chemical or conformational states (called sites) of a spin center
change the sH parameters. These changes can affect EPR spectra if the timescale of
the process is not much slower than the timescale of the EPR experiment, which is
equal to the inverse of the spectral shift caused by the exchange processes. Depend-
ing on this relative timescale, slow, intermediate, and fast exchange regimes are
distinguished. Generally, it is assumed that the transitions between sites are
‘‘sudden,’’ that is, negligibly short compared to the periods of the spin coherences.
One prominent example of spectral effects of chemical exchange in EPR is
alternating linewidths [346, 347]. They have been reviewed in great detail [298].

Two structurally distinct situations can occur [143]: intramolecular exchange,
where a dynamic process transfers spin polarizations and coherences within a
molecule from each transition to a unique target transition (e.g., conformational
equilibria); and intermolecular exchange, where a process transfers coherences
from one molecule to another and therefore from one transition to a set of
transitions with different probabilities, determined by the spin state of the other
molecule (e.g., intermolecular electron transfer). Mutual exchange denotes a special
case of intramolecular exchange, where the molecular structures before and after
the exchange are indistinguishable [348]. The spin Hamiltonians for all sites are
identical except for the labeling of the nuclear spins. The fractional population of
each of N sites is therefore 1

N
, and the dynamic behavior is characterized by a single

rate constant.
For a two-state kinetic system, chemical exchange effects can be modeled using

modified Bloch equations [349, 350]. A more general approach is formulated in
Liouville space using the SLE including an exchange superoperator or kinetic
matrix that describes the transfer of coherences from one transition to another as a
result of the dynamic process. This Liouville method was first developed [351–353]
and then generalized and extended [125, 354] in NMR, including a simple index-
permutation method [355]. It is valid for all three exchange regimes. In general,
chemical exchange is modeled in the composite direct-sum space of the Liouville
spaces of the various sites. In the case of mutual exchange, the Liouville matrix
can be block-diagonalized, and the composite Liouville space can be reduced to
the Liouville space of a single site [348]. Any kinetic network between a number
of sites can be implemented, for example, for independent exchange processes
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occurring simultaneously such as electron transfer and internal conformational
changes. Multiple superimposed intermolecular exchange processes can be mod-
eled as well [356]. There exist efficient NMR simulation programs [357], even for
nonequilibrium chemical exchange [358]. More recently, Monte Carlo approaches
to the simulation of dynamic NMR spectra have been developed [359].

Freed and Fraenkel [112], in their ground-breaking work, have developed the gen-
eral exchange theory for alternating linewidth effects in EPR. Intermolecular triplet
transfer has been described by Hudson and McLachlan [360]. Norris has derived
a simple equation for intramolecular multisite exchange under the conditions of a
single average lifetime for all the sites and exchange pathways between each pair
of sites [361]. The Norris equation and the Liouville method (see above paragraph)
have been implemented by Grampp and Stiegler [362]. Heinzer [44] has imple-
mented the NMR Liouville method for EPR and adapted it for least-squares fitting
using analytical derivatives of the spectral and shape vectors [45]. His programs
have been popular for a long time, and a more recent program has extended the
functionality to biradicals [363]. Rockenbauer has combined least-squares fitting
with chemical exchange simulations based on the modified Bloch equations for
a two-site model that can also include fast-tumbling effects [43, 364]. EasySpin
follows Heinzer’s Liouville method [44, 45] and extends it to larger spin systems.
Most current chemical exchange EPR simulation programs are limited to isotropic
first-order spectra of S = 1

2
coupled to a few nuclei. Spinach [64] supports arbitrary

exchange matrices. Efficient and general programs for situations where more than
a few nuclei are involved, or where the sH is anisotropic and contains nonsecular
contributions, are not currently available.

As shown for the case of intramolecular multisite exchange with some equivalent
sites in NMR, permutational and other symmetries in the Liouville operator can
be exploited to reduce the size of the Liouville space that needs to be included in a
spectral simulation [122, 365, 366]. Taking advantage of these symmetries is crucial
for improving the performance of simulations for large spin systems. They have
yet to be leveraged substantially in general EPR simulation programs.

Although it might appear that chemical exchange processes are not relevant in
solid-state systems at low temperatures, methyl reorientations by hindered rotation
(hopping) or tunneling can dynamically affect EPR and ENDOR spectra [143]. In
addition, experimentally observed Jahn–Teller pseudorotation of fullerene in its
photoexcited triplet state was successfully simulated using a multisite chemical
exchange model [367].

3.6
Pulse EPR Spectra

To compute pulse EPR spectra, a differential equation describing the time evolution
of the spins in the spin system must be solved. Depending on the particular
experiment and on the algorithm, this can be done in the time or in the frequency
domain. Three different levels of theory are generally employed: (i) the Bloch
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equations, (ii) the LvN equation in Hilbert space, and (iii) the LvN or SLE in
Liouville space. All spin dynamics simulations are normally carried out in the
rotating frame or a similar interaction picture [67, 75, 368].

3.6.1
Bloch Equations

The classical torque equation for the magnetization vector, that is, the Bloch
equation without the relaxation terms, has been used to describe spin echo
phenomena since their discovery [369]. The Larmor or Bloch equations are
adequate for simulating pulse EPR and NMR experiments on spin centers with
a single spin with isotropic gyromagnetic ratio. They can accommodate arbitrary
excitation fields. Many closed-form solutions have been derived, but it is also
straightforward to solve them numerically using standard ordinary differential
equation solvers. The Bloch equations form an important classical description of
magnetic resonance experiments [370].

As shown by Feynman et al. [371], the state of any two-level quantum system
can be described by a magnetization-like vector, and its coherent dynamics can be
modeled using a Larmor- or Bloch-like equation as mentioned above. This leads to
the concept of the Bloch sphere, as utilized, for example, for optical transitions.

3.6.2
Hilbert space

The Hilbert-space LvN equation describing the spin dynamics in terms of the
density matrix has been used for spin dynamics since the early days, for example,
by Bloom [372]. Solutions of the Hilbert-space LvN equation can be derived and
implemented at several levels. For simple systems and pulse sequences, scalar
expressions can be obtained. For more complicated spin systems, the coherent
dynamics can be modeled using numerical density matrix propagation. Longitu-
dinal and transverse relaxation can be taken into account phenomenologically in
a manner similar to the Bloch equations. In the presence of stochastic processes
such as chemical exchange and rotational diffusion, the density matrix equation
has to be solved in Liouville space.

3.6.2.1 Scalar Equations
Scalar expressions for the simulation of two- and three-pulse ESEEM [75] traces go
back to the theory developed by Mims [373–375] and others [376, 377], excellently
summarized in the first chapter of a monograph by Dikanov and Tsvetkov [378].
These scalar expressions are valid only for S = 1

2
, isotropic g values, and I = 1

2
, but

have been extended to S > 1
2

[368, 379, 380] and anisotropic g-matrices [381]. Scalar
expressions are very valuable for physical insight [382].

For I > 1
2
, perturbational expressions have been derived that assume that the

quadrupole interaction is smaller than the hyperfine and the nuclear Zeeman
interactions. For I = 1 and I = 3

2
, it is possible to incorporate the quadrupole
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interaction exactly, since general scalar-level expressions for the eigenfrequencies
and eigenvectors of the corresponding nuclear spin Hamiltonians are known [383,
384]. A graphical method for their solution was devised [385–387].

For HYSCORE and other more advanced ESEEM experiments, explicit analytical
scalar expressions are available [75, 388–392]. These types of expressions can
be readily derived using algebraic methods [393–396] using programs such as
Mathematica or Maple. However, for anything but the simplest pulse sequences,
they are too complicated to offer much physical insight.

For the out-of-phase ESEEM observed in spin-correlated radical pairs, an ana-
lytical scalar expression based on a density matrix dynamics description has been
derived and can be easily implemented [397, 398].

3.6.2.2 Matrix Equations
More general methods for pulse EPR are based on the solution of the LvN equation
using matrix representations of density matrix, propagator exponentials, and
detection operators in Hilbert space. Mims originally introduced this description
for S = 1

2
in the high-field approximation [374, 375]. In that limit, hyperfine terms

containing Sx and Sy are neglected, so that the spin Hamiltonian is block-diagonal,
with two nuclear sub-Hamiltonians on the diagonal [14]. The equation can then
cleanly be transformed into the rotating frame [368]. The final expressions for
the TD signals contain products of elements from the unitary overlap matrix
between the nuclear eigenstates in the + 1

2
and − 1

2
electron spin manifolds [374,

375, 378, 399, 400]. This matrix is denoted M and sometimes called the Mims
matrix. Its matrix elements are the branching factors that determine the nuclear
echo envelope modulations and are analogous to the Frank–Condon factors for
vibronic transitions.

In all their incarnations, Hilbert-space methods in essence generate a list of
frequencies 𝜔ξ and complex amplitudes Zξ that together determine the complex
exponentials that constitute the final TD signal [14]. For example, for 2D data

V(t1, t2) =
∑
ξ

Zξ ⋅ e−i𝜔1ξt1 ⋅ e−i𝜔2ξt2

where Zξ is a product of matrix elements from M, and 𝜔ξ are differences of
eigenvalues of the nuclear sub-Hamiltonians. For a general summary of the
Hilbert-space method, see [14].

Frequencies and amplitudes are used to construct either the TD directly or
via the frequency domain [58, 61]. Three approaches are possible. (i) The most
straightforward and most widely employed method is direct brute-force evolution
in TD [55, 376, 377, 401, 402]. This is simple, but can be computationally overly
expensive for situations with many peaks or large TDs. (ii) The second method
utilizes the frequencies and amplitudes obtained from the density matrix calculation
to construct an FD histogram, which is then converted to TD using Fourier
transform. This FD ‘‘binning’’ method [49, 50, 54, 374, 380, 399] is very fast
and advantageous for situations with many peaks, as it involves essentially no
computational cost per peak. The costliest operation is the Fourier transform.
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It is particularly efficient for powder simulations. However, FD binning is only
approximate, as it involves rounding the frequency of each peak to the nearest
discretized frequency in the FD histogram. It can lead to systematic errors, for
example, incomplete phase interference in powder simulations. (iii) The third
method is a variation of FD binning that addresses these shortcomings [403]. It
is based on the convolution and deconvolution of a short finite impulse response
filter kernel. It is much faster than the TD method and orders of magnitude more
accurate than FD binning.

A bottleneck in the simulation of pulse EPR spectra is the computation of the
propagator matrices U via matrix exponentiation. In Hilbert space, the matrix
exponential is required to compute the propagation sandwich product. Many
numerical methods for computing matrix exponentials are known [404, 405], for
example, Taylor-series expansion, Padé approximation, Chebyshev approximation,
differential equation solvers, and matrix diagonalization.

Several ESEEM simulation programs have been developed, described, and applied
in the past few decades: MAGRES, from Nijmegen, was probably the first general
ESEEM simulation program based on density matrix theory [49, 50, 406]. HYSCORE
simulation programs were developed and described by Goldfarb [54], Schweiger
[55], and others [407]. OPTESIM, a recently described 1D ESEEM simulation
program, includes a least-squares fitting algorithm [57]. SimBud [56] has a UI.
Molecular Sophe [24] supports pulse EPR simulations. EasySpin supports arbitrary
user-defined pulse EPR sequences [14].

ESEEM theory for high-spin systems is well developed and can be implemented
in a straightforward manner. Compared to a spin- 1

2
system, where only one

allowed EPR transition is present, many more are present in high-spin systems. All
methods compute the expectation value of the electron spin angular momentum
vector ⟨S⟩T

i
= (⟨Sx⟩i, ⟨Sy⟩i, ⟨Sz⟩i)T for each energy eigenstate (i = 1, … , 2S + 1) of

the electron spin and then use this to construct spin Hamiltonians for the nuclear
sub-manifolds:

Hnuc(i) =
∑

k

⟨S⟩T
i AkIk − gn,k𝜇NBT

0 Ik + IT
k PkIk

Among the first high-spin ESEEM simulation examples were Cr3+ (spin 3
2
) and

its Al3+ neighbors [408] in ruby, and protons in photoexcited triplet states of
various organic molecules [379, 409, 410]. The theory for high-spin transition
metal ions with small zero-field splittings has been detailed by Peisach [411], and
graphically represented by Singel [380]. Peisach neglected nonsecular terms in the
zero-field splitting, leading to ⟨Sx⟩i = ⟨Sy⟩i = 0. These terms have been shown to
be important by Astashkin and Raitsimring [368]. For small zero-field splittings,⟨S⟩i can be obtained via perturbation theory [368, 412], whereas more generally,
matrix diagonalization must be used [14]. Oliete has used ESEEM simulations for
fluorine ligands in an S = 2 Cr2+ system [413].

When multiple nuclei are present in a spin system, the combined nuclear
sub-Hamiltonians can be factored into direct products of single-spin nuclear sub-
Hamiltonians. As a consequence, the overall echo modulation amplitude can be
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factored into a sum of products of modulations as long as pulses are nonselective.
These ‘‘product rules’’ have been derived and published for two-pulse ESEEM [373,
374, 408], three-pulse ESEEM [378, 414, 415], and HYSCORE [416], as well as for
two-pulse ESEEM on triplets [379]. A general form of the product rule was derived
for and implemented in EasySpin [14].

Hilbert-space density matrix propagation methods can also be applied to mul-
tifrequency experiments. Such simulations have been performed for DEER [417]
and double-quantum coherence (DQC) [300, 418] experiments.

Many software packages have been developed that provide efficient Hilbert-space
and Liouville-space spin dynamics simulations for both EPR and NMR. Highly
optimized packages include SMART [419], Gamma [55, 402, 420], BlochLib [421],
and the more recent high-performance packages Simpson [62], SPINEVOLUTION
[63], and Spinach [422]. All can be applied advantageously to EPR in some situations.
There are several opportunities for parallelization in Hilbert-space methods. Once
frequencies and amplitudes are calculated, they can be combined into TD traces
or binned into an FD histogram in parallel. Recent work has identified ways to
parallelize density matrix propagation directly using appropriate decomposition of
the density matrix [423, 424].

Despite a well-developed theoretical basis, the current accuracy of pulse EPR sim-
ulation methods is not entirely satisfactory. Simulations of ESEEM and HYSCORE
spectra often do not match very well with experimental data. Peak positions can
often be reproduced, but peak intensities tend to be off. This discrepancy indicates
that the theoretical models are too simple and should be improved. Reasons for the
discrepancy are as follows: (i) Most simulations assume ideal rectangular pulses,
whereas in practice pulses are neither infinitely short nor perfectly rectangular.
(ii) Because of the product rules, simulations of ESEEM spectra of one nucleus
can only be accurate if all other nuclei are included. This is currently not done.
(iii) The position and width of the detection integration window relative to the
echo transient affect the modulation intensities (observer blind spots [389]). For
example, an integration window with nonzero width acts as a low-pass filter. Most
simulations assume a single-point detection at the simple 𝜏 point, which need not
even be the echo maximum. (iv) Site-to-site heterogeneity and correlated hyperfine
strains between different nuclei on the same spin center can affect line positions
and intensities, but are never taken into account.

In NMR, simulation methods for time-dependent problems such as magic angle
spinning (MAS) have been developed [61, 425, 426]. Two recent reviews summarize
the application of Floquet theory to such problems in solid-state NMR simulations
[427, 428]. For EPR, these techniques can be used to describe experiments with
simultaneous irradiation at multiple frequencies such as rf-driven (radiofrequency)
ESEEM [429], cw multi-quantum EPR [430], double-modulation EPR [431], and
standard cw EPR [131].
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3.6.3
Liouville Space

The most general equation for the simulation of spin dynamics in pulse magnetic
resonance experiments is the SLE. In NMR, it is widely applied [64, 432]. In EPR,
apart from its central importance in the simulation of slow-motion, saturation, and
chemical exchange cw EPR spectra, the SLE has been used only in a few pulse
EPR experiments: 1D and 2D Fourier transform EPR experiments in ordered and
viscous fluids [316, 433–435], 2D DQC experiments [436], EXSCY [437], and a few
others [75]. In general, the SLE has not seen widespread use in pulse EPR, since
most current pulse applications are on solids and do not require the incorporation
of stochastic processes.

Since the matrices associated with the SLE are very large, simulations tend to
be slow. Two approaches are possible to improve performance: (i) more efficient
algorithms and (ii) reduction of space dimensionality.

Much effort has been spent in finding more efficient algorithms. Sparse matrix
methods can be advantageous, and methods based on Lanczos methods [27] are
routinely utilized. An improved Lanczos-based method for matrix reduction to
tridiagonal form has recently been presented [438]. Finite-element methods have
also been proposed [439]. In Liouville space, in contrast to Hilbert space, the
costly computation of the matrix exponential can be avoided and replaced by faster
methods that directly apply the propagator to a density matrix (in vector form) as a
matrix–vector multiplication. Methods that reduce the dimensionality of Liouville
space by pruning the basis set to exclude insignificant dimensions were originally
introduced in slow-motion EPR simulations that employed the Lanczos algorithm
[440, 441], as discussed in Section 3.5.1.3. More recently, Kuprov has developed
state space restriction methods for NMR that reduce the size of the Liouville space
and the size of the associated density vector and Liouville matrix, leading to large
gains in performance compared to a brute-force approach [64, 422, 442–444]. NMR
simulation methods for large spin systems is an active area of research [445, 446].

3.7
Pulse and cw ENDOR Spectra

ENDOR spectra are acquired in the presence of a constant external magnetic field,
so that the sH does not change during an experiment. Therefore, ENDOR spectra
in the rigid and fast-motion limits can be simulated much more easily than cw EPR
spectra in the same regimes. No field-dependent Zeeman energy level diagram
needs to be constructed. As will be described below, the main difficulty is the
efficient and accurate computation of line intensities.
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3.7.1
Transition Frequencies

The computation of the transition frequencies for ENDOR is identical in complexity
to that for frequency-swept EPR spectra. For this step, two levels of theory, matrix
diagonalization and perturbation theory, are used. Using matrix diagonalization, the
full sH matrix with the chosen external static field is diagonalized once to determine
all energy eigenvalues and eigenstates. The differences of the eigenvalues give the
transition frequencies. This approach has been implemented in several programs
[49, 208] including EasySpin and works well for small spin systems. However, the
size of the Hamiltonian matrix scales exponentially with the number of ENDOR
nuclei.

Therefore, in the case of a large number of nuclei (e.g., when modeling matrix
lines), analytical first- and second-order perturbation theory expressions [225, 227,
447–449] are used to obtain approximations to the eigenvalues. For multiple
nuclei, cross terms between hyperfine couplings within pairs of nuclei are present
[226]. They cannot be neglected if one of the hyperfine couplings is substantial.
A relevant example is 1H ENDOR in Cu complexes with large Cu hyperfine
couplings. Perturbative treatments can become unacceptably inaccurate for systems
with multiple large hyperfine couplings such as 55Mn ENDOR on oligonuclear
Mn clusters. As in the case of cw EPR spectra, the validity of perturbational
approximations should be checked carefully. Unfortunately, few programs do this
consistently, leaving the user uninformed on whether the chosen level of theory is
accurate enough. Hybrid methods, as used for cw EPR and ESEEM, are applicable
to ENDOR as well.

3.7.2
Intensities

While the computation of ENDOR line positions is straightforward, the accurate
and general calculation of line intensities is more challenging. To the best of our
knowledge, no generally available program is currently able to do this. Unlike
cw EPR, where Fermi’s Golden Rule gives accurate approximations to the line
intensities in the experimentally relevant non-saturating limit, ENDOR involves
either saturating irradiation (cw ENDOR) or bandwidth-limited and spectrally
selective excitation (pulse ENDOR). For cw EPR, the full steady-state LvN equation
needs to be solved, including relaxation rate constants. This often leads to over-
parameterization. For pulse ENDOR, at least the Hilbert-space LvN equation for
the density matrix is required.

In a simplified picture, the intensity of an ENDOR transition between two levels|u⟩ and |v⟩ can be written as a product of several factors

IENDOR
𝑢𝑣 ∝ t𝑢𝑣(B2) ⋅ 𝛼𝑢𝑣(𝜔mw, 𝜏, tp) ⋅ Δp𝑢𝑣(T) ⋅ f (𝜔rf − 𝜔𝑢𝑣)
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where t𝑢𝑣 is the transition moment, 𝛼𝑢𝑣 is a selectivity factor that depends on
experimental settings, Δp𝑢𝑣 is the Boltzmann polarization of the transition, and f
is the excitation profile of the rf excitation [450].

One aspect of the transition moment that affects both cw and pulse ENDOR spec-
tral intensities, and distinguishes ENDOR from NMR, is hyperfine enhancement
[451–453], the fact that the presence of the hyperfine-coupled electron spin ampli-
fies the driving rf field strength at the nucleus. Theoretically, this is accounted for
by including the electron Zeeman Hamiltonian in addition to the nuclear Zeeman
operator in the transition operator [1]. In cw ENDOR, this results in increasing
intensity with increasing ENDOR frequency. In pulse ENDOR, this results in
increased nutation frequencies and effective flip angles during rf pulses with
increasing ENDOR frequency, affecting spectral intensities in a nonlinear way. In
principle, these distortions can be modeled using a complete Hilbert-space density
matrix treatment. One approximation uses a product of NMR and EPR transition
moments, where the latter are summed over all EPR transitions that share one
level with the given ENDOR transition [49]. In general, ENDOR simulations tend
to be most quantitative for single-isotope pulse ENDOR spectra over a relatively
narrow frequency range, for example, ENDOR of weakly coupled 1H at Q-band,
where transition moments do not vary much across the spectrum.

The second aspect that distinguishes ENDOR from NMR is the selectivity
𝛼 imposed by the narrow-bandwidth microwave excitation. The intensity of an
ENDOR transition not only depends on matrix elements of the Zeeman operator,
but also on the microwave frequency. Only a nuclear transition for which one of
the nuclear levels is part of an EPR transition that is resonant with the microwave
frequency will yield significant ENDOR intensity. This leads to strong orientation
selectivity in anisotropic systems and transition selectivity in systems with hyperfine
couplings that are larger than the microwave excitation bandwidth. For powder
simulations, this selectivity is a significant computational burden, since often only
a small fraction of computed orientations of the spherical grid exhibit nonvanishing
ENDOR intensity. The majority of evaluated orientations are not significant to the
final spectrum. There seems to be no general remedy against these superfluous
computations. In some cases, a viable work-around is an orientation preselection
procedure: the selectivity is computed for all orientations for a reduced spin system
consisting only of spins with anisotropic interactions larger than the electron
excitation bandwidth. In a second step, the ENDOR spectrum of the full system is
computed only for those orientations where the selectivity factor is above a chosen
threshold [1, 14]. Alternatively, the simulation in this second step can be restricted
to a spin system containing only the nuclei of interest, using an effective hyperfine
field [14, 55, 454]. All pulse EPR experiments are orientation selective if the spectral
width exceeds the excitation bandwidth of the pulses, as is most commonly the case.

In pulse ENDOR, there exist additional selectivity effects. Intensities in Mims
ENDOR spectra are affected by 𝜏-dependent blind spots. In Davies ENDOR spec-
tra, intensities are attenuated by the nonselectivity of the first inversion pulse
(self-suppression) of length tp. Again, these effects arise automatically if full den-
sity matrix simulations are performed. However, an intermediate approach that
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circumvents density matrix dynamics solvers, but still reproduces the selectivity

amplitude features of specific pulse ENDOR experiments, uses analytical approxi-

mate excitation and detection envelopes [450] that can model effects from limited

excitation bandwidth and 𝜏-dependent blind spots. The simulation of blind spots

and matrix suppression in Mims and Davies ENDOR have been investigated in

great detail [455–457].

High-spin pulse ENDOR simulation methods were developed for Mn systems

[368, 458, 459], and iron(III) [460] and diiron(II) centers [461]. They follow along

the lines of high-spin ESEEM simulations, as discussed in Section 3.6.2.2.

Full-density matrix methods have been used to simulate pulse ENDOR spectra

[462] and can include both coherence and relaxation [463]. These models tend

to suffer from over-parameterization, but can be trimmed down. For instance,

most pulse ENDOR experiments are based on polarization transfers [75]. For

such experiments, a simplified density matrix dynamics approach is often used

[464]. Coherences are neglected, and the vector of populations, containing only the

diagonal elements from the density matrix arranged in a column, is propagated in

time. This is equivalent to restricting the Liouville-space spin basis for the density

operator to longitudinal terms (Sz, Iz, SzIz, and identity operator). T1 relaxation and

saturation effects are easily included. Multi-sequence pulse ENDOR experiments

[465, 466] have been modeled and analyzed using this approach.

Some of the difficulty of quantitatively simulating ENDOR intensities is due

to instrumental imperfections. In contrast to EPR and NMR, ENDOR involves

a broadband rf transmitter. Over the broad rf ranges that are swept in ENDOR,

the frequency characteristics of the transmitter (source power, amplifier gain,

coil impedance) are rarely completely flat. Any non-flatness directly affects the

power delivered to the sample and therefore the ENDOR intensities. This could in

principle be taken into account by convolving the spectrum with the transmitter

characteristics, but would require extensive rf characterization of the instrumenta-

tion. Spurious resonances in the rf transmitter can lead to spurious features in the

ENDOR spectrum.

3.7.3
Broadenings

Line broadenings in ENDOR spectra are usually modeled by simple convolution

with a combination of Gaussian and/or Lorentzian lineshapes. Anisotropies in

these broadenings are rarely modeled. No physical models are used. Often, A

strain is thought to contribute to the broadening. Broadening effects due to the

pulse length of the ENDOR pulse can be included using convolution with a sinc

function.
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3.8
Pulse DEER Spectra

Although pulse DEER methods can be simulated using the density matrix methods
outlined in Section 3.6 [300, 417, 418], the main need for computational methods
for DEER data is in data analysis. Fitting of experimental DEER data requires
intricate data analysis methods. Therefore, we mention some of these recent
methods. Methods for the extraction of distance distributions from dipolar time
traces based on Tikhonov regularization [467, 468] and maximum entropy [469]
have been developed. DeerAnalysis [470] is a widely used program that provides
a large number of analysis and fitting methods for DEER data. DEFit [471,
472] provides multi-Gaussian distance distribution models. MMM [473] can use
protein structures to derive a distributional model for nitroxide pair distances and
orientations, and compute the DEER trace from that.

For molecules with two flexible spin labels, the computation of the solid-state
DEER spectrum involves summation over all possible relative orientations and
distances between the two spin labels [174, 474]. For a powder simulation, this
requires integration over a total of six degrees of freedom: two Euler angles that
describe the orientation of the molecule with respect to the external magnetic
field, three additional Euler angles that describe the relative orientation between
the two spin labels, and the interlabel distance. The combined conformer/distance
distribution is generally described by a multidimensional probability distribution
function. As a consequence, the corresponding simulations doing this brute-force
integration are painfully slow. However, parallelization is trivial and can result in
tremendous speed-ups. Computational aspects of the dynamics and conformational
distributions of spin labels have been reviewed very recently [475]. PRONOX is
an algorithm for rapid computation of distance distributions based on conformer
distributions [474]. MtsslWizard is a plugin to PyMOL that allows in silico spin
labeling and generation of distance distributions [476].

3.9
Least-Squares Fitting

Methods for ‘‘automatic’’ least-squares fitting of simulated spectra based on an
sH model to experimental spectra have been developed from the very early
days of EPR [477, 478]. In these methods, a set of sH parameters is varied in
consecutive simulations until an optimal match between the simulated spectrum
and the experimental spectrum is achieved. The match is generally quantified
by an objective function (goodness-of-fit function, error function, target function)
that depends on some measure of the difference between the simulated and
experimental spectra.

Least-squares fitting methods have also been used in other aspects of EPR data
analysis, for example, to computationally determine the center of symmetry of a
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spectrum [479]. These applications lie beyond the scope of this overview. Least-
squares fitting methods are used in conjunction with locating transition fields [211]
and have been mentioned in the corresponding section above.

In this section, we review the various choices available for the objective function
and for the fitting algorithm, as well as their application to multicomponent and
multispectral problems. Unless otherwise stated, cw EPR is assumed. In addition,
we discuss error analysis. The early literature on fitting methods in EPR have been
reviewed in the book by Mabbs and Collison [10]. For a review of direct search
methods that do not rely on derivatives, see [480].

3.9.1
Objective Function

To assess the quality of the fit between a simulated and an experimental spectrum,
the sum of squared deviations is most commonly used:

χ2 ∝
∑
𝑖

(
yexp,𝑖 − aysim,𝑖 − b𝑖

w𝑖

)2

where yexp,𝑖 are the data points of the experimental spectrum, ysim,𝑖 are the
corresponding ones from the simulated spectrum, a is a scaling factor, and b𝑖
are the data points from a baseline correction function. Each difference in χ2 is
additionally weighted by w𝑖, for example, the error in the measurement. Most often,
w𝑖 = 1.

Conventionally, for cw EPR, the y values in the above expression are taken
directly from the first-harmonic spectrum. However, this is not the only choice.
The spectral derivative, the integral [47], or even the double integral [481, 482] can
be used as basis for χ2. Both the integral and double integral as target functions
have the advantage that search algorithms are less likely to get trapped in local
minima in the case of EPR spectra with many resolved lines. Integration also
reduces the effect of noise. A multistep procedure has been proposed where the
fit is initially based on the double-integrated spectrum, in a middle stage on the
integrated spectrum, and finally on the spectrum as recorded [481, 482].

For spectra of organic radicals with many hyperfine lines, it might be beneficial to
fit the Fourier transform of the spectrum [304], since this dramatically smooths the
error function by removing many local minima. Another objective function that can
be used for spectra with distinct maxima and minima is the aggregate mismatch in
line positions between experiment and simulation. This has recently been used in
linear combination with the conventional χ2 function [483]. An objective function
that subdivides the spectral deviation into segments has been proposed [484].

Despite the added flexibility with a choice of objective function, there are still
situations where almost all fitting algorithms can get stuck. A prototypical example
is a two-component mixture of two spin- 1

2
systems with orthorhombic g-matrices,

with two maximum g values separated from the others and resolved among
themselves. This leads to two minima of almost identical depth in any objective
function. If the two g values are assigned to the wrong components in the fitting, it is
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almost impossible to get out of this minimum by change of objective function alone.
Only permutation of the values, followed by further optimization, will improve the
fit. To prevent these types of failures, additional physical constraints on the ranges
and correlations of the fitting parameters need to be taken into account. Ideally,
additional experimental data are included to resolve this ambiguity.

3.9.2
Search Range and Starting Point

In addition to a smooth error function, two other keys to success in least-squares
fitting with iterative methods are (i) a choice of the starting parameter values
close to their values at the expected global minimum and (ii) the choice of an
adequate search range. The choice of the fitting algorithm is secondary to these
aspects.

A poor choice of starting point will often lead to non-convergence or to the
convergence to a physically nonsensical solution. The search range should be
restricted to a parameter subspace large enough to contain the expected solution,
but small enough to be searchable in a reasonable amount of time. The set
of parameters can also be transformed from one basis to another to deal with
correlations between parameters. For example, instead of searching the space of
two g-factors (g⊥, g||), the search can be done with the transformed coordinates

(Δg, g) with Δg = g|| − g⊥ and g = (g||+2g⊥)
3

.

3.9.3
Fitting Algorithms

The choice of the algorithm for least-squares fitting has profound influence on
the convergence rate and on the robustness of the search, that is, on the ability
to find the global minimum despite local minima and noise. The dependence of
EPR spectra on magnetic parameters is nonlinear, so that nonlinear least-squares
methods are used [485]. Broadly, they fall into two groups: local and global. Local
methods are generally fast, but are only able to locate a minimum in the objective
function close to a starting parameter set. Global methods search the parameter
space more widely and are able to locate a global minimum in the objective
function, although mostly at the cost of a significantly slower convergence rate.
EasySpin provides the user with a selection of algorithms as do XSophe [23] and
other programs [486].

3.9.3.1 Local Methods
Local methods involving derivatives based on analytical expressions [215] and
Feynman’s theorem [487] have been employed. The first instances of local least-
squares fitting of EPR spectra used the Gauss–Newton or gradient descent methods
with analytical derivatives [45, 477, 478, 488, 489]. These algorithms are still used
occasionally. Another simple algorithm, the Newton method, is based on a local
quadratic approximation of the error function. Misra [211, 213, 214, 490, 491]
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has used it together with explicit first and second derivatives of χ2 in a general
least-squares fitting program.

The de facto standard method of local nonlinear least-squares search is the
Levenberg-Marquardt (LM) algorithm. The LM method adaptively varies the step
size and direction. Far from a minimum of χ2, it acts similarly to a gradient descent
method, stepping in the direction of steepest descent of χ2. Close to a minimum,
it acts similarly to the Gauss–Newton method that assumes that χ2 is locally
quadratic and steps accordingly. Typically, this method converges rapidly toward a
minimum. The LM algorithm has been deployed many times in EPR, both with
analytical [290, 492, 493] and numerical gradients. For the fitting of slow-motional
nitroxide spectra, the LM algorithm [494] as well as a trust-region modification [433]
were implemented. These two approaches and the simplex methods were recently
compared [46].

The popular Nelder–Mead simplex method is simple and relatively robust. For
the search of an N-dimensional parameter space, it sets up a set of N + 1 parameter
values that geometrically constitute the vertices of a simplex in parameter space
(e.g., a triangle for N = 2, a tetrahedron for N = 3). On the basis of the χ2 values
at each of the vertices of the simplex, new vertices are chosen and evaluated. The
simplex ‘‘walks’’ through parameter space to a nearby local minimum. The method
is robust, but not very fast. It is used extensively in EPR [295, 484, 495–500].

Other local-search methods used in EPR simulations include the Hooke and
Jeeves pattern search [20, 22] and Powell’s conjugate gradient method [42, 501].
Multidimensional fits can be performed by consecutive 1D minimizations [43].

3.9.3.2 Global Methods
Global methods are able to search the parameter space more completely, increasing
the likelihood of locating the global minimum. Most of them rely on an element of
randomness and often involve large sets of parameter sets.

Many forms of random Monte Carlo search methods have been proposed and
implemented. They range from simple random-step downhill walk [350, 502] to
simulated annealing [20, 22, 23, 242, 484, 503–506], an adaptation of the Metropolis
algorithm.

In recent years, several variations of the genetic (evolutionary) algorithm have
been applied to EPR [498]. In these methods, the goodness-of-fit (‘‘fitness’’) for a
group of M candidate parameter sets are computed. Each parameter set is treated
as an individual, and a process akin to natural selection based on the fitness values
is applied to the M sets by crossover and mutation to form the next generation of M
parameter sets. This process is repeated until the population converges to a mini-
mum. The main appeal of these methods lies in the fact that they are random, but
directed. Genetic methods have been combined with local-search algorithms such as
Powell or simplex [42, 501, 507] to accelerate convergence once close to a minimum.

Artificial neural network models have been used to extract rotational correlation
times from motional spectra [508]. Other nature-inspired algorithms such as
particle-swarm optimization and bacterial foraging have not seen visible usage
in EPR.
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Systematic grid searches [86, 509] form another set of methods that can locate
the global minimum. In contrast to the methods above, they are nonrandom and
systematically scan the entire parameter space. For large parameter spaces, they
are very slow. For example, for searching a six-dimensional parameter space with
10 points along each dimension for each parameter, 106 simulations are necessary.
However, they can be expanded into weighted tree searches and combined with
local-search methods to improve efficiency. Their main appeal lies in the fact
that they return the global minimum. They are well suited for massively parallel
computer architectures, as all the simulations are independent of each other.

3.9.4
Multicomponent and Multispectral Fits

In spectra consisting of multiple components, the fitting parameter space includes
not only a set of magnetic parameters for each component but also the relative
weights of each component. In this case, the spectrum is a linear combination of
nonlinear functions of the spin Hamiltonian parameters. These types of problems
can be efficiently solved using separable nonlinear least-squares methods [510].
A special case of multicomponent spectra is a spectrum that contains baseline
distortions. These can be treated as an additional component and included in the
fit, usually as a linear or quadratic function (see χ2 definition above).

Multicomponent spectra are in general very challenging to analyze. If no good
starting guess for the component parameters of a multicomponent spectrum is
available, an attempt at decomposition into single components can be made using
principal component analysis (PCA) [511] or maximum-likelihood common-factor
analysis [512]. A fitting program for multicomponent nitroxide spectra has been
implemented [31]. EasySpin supports general multicomponent fits.

The simultaneous fit of multiple cw EPR spectra acquired at different microwave
frequencies (e.g., S, X, Q, and W band) can help constrain the parameter space
and reduce the number of local minima for a multidimensional search space. One
simple way to implement such multispectral fits is to concatenate all experimental
spectra into a 1D array with appropriate weights and then use standard methods on
this concatenated spectrum. A set of ENDOR or ESEEM spectra acquired at different
magnetic fields is another common multispectral fitting problem. Simultaneous
fits of spectra acquired at different temperatures can constrain static and dynamic
parameters together, for example, in chemical exchange problems [43, 513].

3.9.5
Limits of Automatic Fitting

Most fitting algorithms depend on a series of parameters, such as default step sizes
and damping factors. The values of these parameters can affect the convergence
rate and determine whether fitting will be successful or not. Therefore, there
are several levels of user choice in least-squares fitting: (i) the dimensionality
and representation of the parameter space, (ii) the starting point(s), (iii) the search
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range, (iv) the objective function, (v) the fitting algorithm, and (vi) the configuration
of the fitting algorithm. These choices depend strongly on the problem at hand and
on the expertise of the user. This renders a general ‘‘automatic’’ least-squares fitting
procedure applicable to all types of EPR spectra essentially impossible. Despite
tremendous effort, the goal of fully automated fitting of EPR spectra is as distant
as ever. However, the host of developed algorithms provides a rich toolbox that can
greatly assist the search for a good fit. EasySpin provides an interface that lets users
make and change settings at all levels of choice.

3.9.6
Error Analysis

Once converged, least-squares fitting algorithms return a set of supposedly optimal
parameters. Several questions need to be answered before these values should be
taken as a final result: (i) Is the fit close enough? Even if the fit returns the global
minimum, the χ2 error might be too large. In this case, the physical model needs
to be modified. (ii) Are the optimal parameters physically meaningful? If not, other
minima with similar χ2 values need to be examined, or the model needs to be
modified. (iii) How accurate are the obtained parameters? To answer this question, a
statistical error analysis that establishes estimates for the parameter variances needs
to be performed, for example, based on the covariance matrix or on Monte Carlo
simulations of synthetic parameter sets [514]. Misra was the first to present a method
based on the curvature matrix (matrix of second derivatives of χ2) [515]. Others have
provided similar approaches [57, 214, 433, 486, 516]. However, in the experimental
literature, this crucial aspect of least-squares fitting is very often neglected.

3.10
Various Topics

3.10.1
Spin Quantitation

Accurate quantitation of spin centers in an EPR sample is very desirable in
many applications [517]. Two different principles of quantitation can be used:
comparison of double integrals and quantitation by simulation. Among software
programs, SpinCount has special provisions for spin quantitation [26]. EasySpin
returns simulated cw EPR spectra with calibrated intensities for all systems and
regimes, so that quantitation by simulation is possible.

The experimental method of double integration and comparison to a separate
concentration or quantitation standard is feasible for certain classes of spin centers,
for example, organic radicals and other species with narrow spectra. This method
usually relies on a set of assumptions that can all introduce systematic errors if
not valid: (i) sample geometry, placement, fill factors, and Q factors of the analyte
and standard sample are identical; (ii) the transition moments of all lines in the
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spectra of both samples are identical; (iii) the full EPR spectra of both samples are
acquired; and (iv) neither spectrum is saturated. Progress has been made recently
in addressing some of these potential biases. The effect of sample geometry and
spatial B1 distribution within EPR resonators has been incorporated in commercial
software [517].

The second method uses computer simulation to quantitatively simulate the
EPR spectra of both the analyte and the standard sample [282]. From the scaling
factors, relative concentrations can be derived. Compared to the first approach,
this method does not make assumptions about intensities and spectral extent. It
correctly includes differences and anisotropies in transition moments, and it can
easily deal with spectra that are partially out of range. However, it still has to be
ascertained that sample geometry and placement are controlled, and that neither
sample is saturated.

3.10.2
Smoothing and Filtering

Many filtering and resolution-enhancement techniques have been proposed, but
very few are regularly utilized, probably because of the reluctance of spectroscopists
to tinker with experimental raw data. Among digital techniques, moving-average
and Savitzky–Golay filtering [478] and smoothing as well as lineshape deconvolu-
tions are the most common. Analog filtering is based on a resistor–capacitor filter
as implemented in hardware in most EPR spectrometers, but is clearly limited
compared to the myriad digital filtering tools available for spectral post-processing,
and is now generally discouraged. An adaptive digital filtering technique can be
used to increase the signal-to-noise ratio of cw EPR spectra [518].

3.10.3
Data Formats

The two most common data formats are Bruker’s old ESP format (file extensions
par and spc) and Bruker’s current BES3T format (file extensions DTA and DSC).
Both store the data in binary form in one file, and experimental parameters, plus
other metainformation such as details on the data storage format, in a separate
second file. Both formats are open source and documented, although the older ESP
format exists in a somewhat confusing variety of versions. JEOL spectrometers
store data in a proprietary single-file binary format. Custom-built spectrometers
generally employ simple text files to store data. Reading and storing these formats
is straightforward. There exists an EPR version of the JCAMP-DX data format
standard developed by the International Union of Pure and Applied Chemistry
(IUPAC) [519]. This format has yet to gain traction, although the universal adoption
of a standard format would have clear benefits [520].
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3.11
Outlook

Currently, EPR spectra can be modeled reasonably well on the basis of currently
available methods described in this chapter. A large range of systems and exper-
iment types are supported, and simulations are fast enough in many cases to
allow interactive fitting for smaller spin systems. However, both the scope and the
speed of current methods can be significantly increased. Extending and automating
approximation methods should enable a more flexible choice of theory level free of
user interference. This will benefit the simulation of larger spin systems. Parallel
computing, either multi-CPU or GPU-based, will significantly enhance the perfor-
mance of simulation methods, as many algorithms, from matrix diagonalization
to powder averaging and least-squares fitting, can be trivially parallelized.

A major challenge for simulation methods is the increasing size of spin systems
that are of current interest, such as oligometallic clusters and molecular magnets
in EPR and entire proteins in NMR. Efficient simulation of these systems requires
the development of dedicated and highly optimized large-scale methods.

Additional work is necessary to develop more general and usable methods and
software for multispectral fits, which would allow the simultaneous analysis of
multifrequency data (X-band and high-field) or multi-method data (EPR, ENDOR,
ESEEM). It remains to be seen whether multiple types of spectra can be fitted with
a single underlying model without an inordinate increase in the dimensionality of
the parameter space.

Except for very simple spin systems and pulse sequences, pulse EPR simulation
methods are still slow and quantitatively not entirely reliable. As a consequence, they
lag far behind cw EPR simulation methodology and hinder the development of the
field. More work is needed to implement faster and more accurate pulse EPR sim-
ulation methods and to calibrate these against experimental data, for example, for
HYSCORE. This is especially important given the recent emergence of optimal con-
trol pulses [521, 522] that will open up a wide array of new possibilities in pulse EPR.

A general trend is observed where EPR simulation methods are increasingly
combined with other computational methods, to provide complete end-to-end
solutions for certain areas of research. This includes integration with computational
chemistry methods such as DFT [33] and direct fitting of molecular structures to
EPR spectra [523]. MD methods are of increasing importance in spin-label studies,
as discussed in the section on slow-motion simulations. Advances in these areas
will be significant [475].

As an ultimate goal, all types of EPR spectra, no matter whether from solids or
liquids, or including any number of relaxation or other dynamic effects, should be
in principle analyzable on a time scale that is short relative to the effort of sample
preparation and spectral acquisition. This would eliminate the current bottleneck of
spectral simulation and analysis. I hope that this goal is reached in the near future.
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