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We present a rather general and efficient method of simulating electron-spin echo spectra for spin

systems where the microwave frequency does not simultaneously excite EPR transitions that share

a common level. The approach can handle arbitrary pulse sequences with microwave pulses of

arbitrary length and strength. The signal is computed as a sum over signals from the electron

coherence transfer pathways contributing to the detected echo. For each pathway, amplitudes and

frequencies of the signal components are computed and used to construct a spectral histogram

from which the time-domain signal is obtained. For multinuclear spin systems, the nuclear

subspace is factorized to accelerate the computation. The method is also applicable to high

electron spin systems with significant zero-field splitting and to pulse electron-nuclear double

resonance experiments. The method is implemented in the software package EasySpin, and several

illustrative calculations are shown.

1. Introduction

Pulse electron paramagnetic resonance (EPR) spectroscopy is

a powerful technique that reveals otherwise inaccessible details

about the electronic and geometric structure of paramagnetic

centers and their nanoscale environments in a large range of

system of interest in biology, chemistry, physics and material

sciences.1–4 It can resolve weak interactions between electron

spins and between electron and nuclear spins that cannot be

resolved with continuous-wave (cw) EPR. The extraction of

structural information from pulse EPR spectra is a two-step

process: first, the parameters of the underlying spin Hamiltonian

model are determined from the experimental spectra. Then, an

analysis of these spectroscopic parameters reveals information

about the electronic and the geometric structure. Numerical

simulation plays a central role in this process, as complete

extraction of the spectroscopic parameters from the spectra is

generally not possible without it.

The utility of pulse EPR spectra therefore depends directly

on the quality and the power of available numerical simulation

techniques. Whereas such methods are well established in cw

EPR5–8 and validated against experiment, current pulse EPR

simulation methodology is more limited in its capabilities and

not as extensively tested. Currently available approaches

based on analytical scalar formulas work well in some

situations, but are often limited to one or a few specific

experiments and to special cases such as a single nucleus, axial

hyperfine tensors, no (or very small) nuclear quadrupole

coupling, an isotropic g tensor, or infinitely short (ideal)

pulses. High-electron spin systems are rarely supported, and

programs are mostly restricted to one or two nuclei, even

though it is often necessary to include many nuclei in the

simulation.9,10 For experiments where explicit scalar formulas

are not available, slow and inefficient simulations based on the

general density matrix formalism are used, and a separate

program has to be written from scratch for every new pulse

EPR experiment. Substantial progress has been made in recent

years,11–17 but a general and efficient way to simulate pulse

EPR spectra is still desirable.

In order to overcome these limitations in applicability,

scope and performance, we have derived and implemented a

reasonably general method that enables the numerical simulation

of spectra from many pulse EPR and pulse electron-nuclear

double resonance (ENDOR) experiments where electron-spin

echoes are detected, without the need to manually derive

explicit analytical expressions in advance. The method is based

on density matrix dynamics as previously applied to specific

experiments,1,18–26 but is independent of a specific pulse

sequence and avoids many time-consuming operations by

pre-analyzing the experiment in terms of coherence transfer

pathways and computing only those pathways that are actually

detected in the experiment. Also, it uses a variation27 of the

frequency-domain histogram technique12,21,28–31 rather than

the simpler, but much slower time-domain evolution11,13,14 in

order to reduce the usually long computation times for powder

samples and multinuclear spin systems. The method presented

here is implemented in EasySpin,7,8 a widely used software for

cw EPR and ENDOR simulations, where it is integrated with

local, global and hybrid least-squares fitting methods.

The article is structured as follows: initially, we summarize

the fundamentals of the density matrix treatment for pulse

EPR experiments and outline the theoretical essence of our

approach based on nuclear sub-Hamiltonians, individual

electron coherence transfer pathways, and the construction of

the time-domain signal via a frequency-domain filter technique.

We discuss our method for ideal and non-ideal microwave

pulses, introduce a new general subspace factorization formula

(product rule) for multinuclear spin systems, and detail the

extension to high electron spin systems and pulse ENDOR.

After this, we present a few exemplary simulations of pulse
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EPR spectra. At the end, we summarize the salient features of

our approach that set it apart from others and mention its

limitations and possible future extensions.

2. Basics of the theory

General Hamiltonian

The spin Hamiltonian for a spin system with an electron spin

with arbitrary S and a number of nuclear spins is

H0 ¼ HS þ
X
k

½SAkIk � gn;kB0Ik þ IkPkIk�; ð1Þ

where the sum runs over all those nuclei with small hyperfine

couplings that are observed with ESEEM or pulse ENDOR,

and HS collects the interactions of the electron spin (electron

Zeeman interaction, zero-field tensors) and all nuclei with

large hyperfine couplings that are not observed directly in

the pulse EPR experiments, but affect the resonance fields

of EPR transitions. The corresponding energy levels are

illustrated in Fig. 1. The Hamiltonian is in angular frequency

units, and all the symbols have their usual meanings. The first

term in the sum is the hyperfine interaction, the second is the

nuclear Zeeman interaction, and the third is the nuclear

quadrupole interaction. The specific form ofHS is not relevant

for our purposes, and we only assume that its energy levels are

spaced such that microwave pulses cannot simultaneously

excite transitions that share a common level. For the moment,

we will restrict ourselves to one electron spin and a single

ESEEM nucleus. Extensions to electron spins with S 4 1/2

and to more than one nuclei are discussed later.

During a microwave pulse of angular frequency omw and

phase f, an additional term

H1 = 2(mB/h� ) B1gS cos (omwt + f) (2)

is present in the Hamiltonian, where 2B1 is the magnetic field

component of the microwave and is perpendicular to B0.

For an anisotropic g tensor, this results in two oscillating

components acting upon S, one perpendicular to B0 and one

parallel to it. We will neglect the latter one,1 as it modulates

the energy levels on a time scale much faster than the pulse

EPR experiment.

Sub-Hamiltonians

A nucleus observed in ESEEM and pulse ENDOR usually

interacts only weakly with the electron spin in the system, that

is, the energy levels of HS are barely affected by the small

additional local field due to the hyperfine coupling with the

nuclear magnetic moment. The electron spin precesses much

faster than the nuclear spin, and thus the nucleus feels only the

time-average effect of the electron spin vector S, which is

different for each eigenstate |ii of HS. Therefore, we can

replace the operator S in the hyperfine interaction terms in

eqn (1) with the expectation value hi|S|ii and write a separate

nuclear sub-Hamiltonian for each electron spin manifold i, in

angular frequency units,

Hi = hi|S|iiAI � gnB0I + IPI. (3)

For the simplest case of a single unpaired electron (S = 1/2),

HS describes a two-level system and i corresponds to mS,

taking the values +1/2 and �1/2 for the higher and lower

energy eigenstate, respectively.

The nuclear sub-Hamiltonians Hi are (2I + 1) � (2I + 1)

matrices usually represented in the nuclear Zeeman basis |mIi
(mI = �I,. . .,I) and can be diagonalized by the transformation

Hdiag
i = e(i) = Mw

i HiMi, (4)

where e(i) is a diagonal matrix with the eigenvalues (energies)

of Hi on the diagonal and Mi is a unitary matrix with the

eigenvectors (stationary states) of Hi as columns.

If the nuclear quadrupole interaction is zero, Mi can be

computed analytically. The nuclear spin coordinate system can

be chosen such that all Iy terms in Hi vanish. Mi then assumes

the simple form Mi = exp(iZiIy), where Zi = arcos (z�zeff,i) is
the angle between the external magnetic field direction and the

nuclear spin quantization axis for the given manifold. When

represented in the Zeeman basis, Mi turns out to be real

and symmetric with respect to its antidiagonal. In angular

momentum context, it is equal to the Wigner rotation matrix

DI(0,Zi,0) = dI(Zi) for angular momentum I. The nuclear

Hamiltonian in its eigenbasis now reads oiIz, with oi = |hi|S|ii
A � gnB0|. So mI is a ‘‘good’’ quantum number, and the

nuclear sublevels are equally spaced within each manifold.

When the nuclear quadrupole is not zero, eigenvalues and

eigenvectors are not simple anymore and are best obtained by

numerical diagonalization.29,32 There do exist analytical

solutions for the eigenvalues and eigenstates of I = 1 and

I = 3/2 nuclei,33,34 but due to their complexity they are of

limited utility. For I = 1 nuclei (2H, 14N, and 6Li), an elegant

graphical method has been devised that helps to determine the

eigenvalue of Hi.
35,36 In this work, we do not place any

restrictions on the size of the nuclear quadrupole interaction.

Dynamics

The state of an ensemble of spin systems is described by a

density matrix s that changes with time t according to

s(t) = U(t)s(0)U(t)w, (5)

where s(0) is the initial density matrix, and U(t) is the unitary

propagator matrix determined by the Schrödinger equation

Fig. 1 Energy level diagram for the type of spin systems addressed in

this paper. Each level ofHS is split into a manifold of nuclear sublevels

due to nuclei with small hyperfine couplings that are observed in the

pulse EPR experiment. omw is the microwave frequency.
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_U=�iH(t)U(t) with Uð0Þ ¼ I. If the Hamiltonian H is

time-independent, then this gives a closed exponential form

for the propagator,

U(t) = e�iHt, (6)

otherwise U(t) has to be obtained by numerical integration.

The propagator U assumes different forms during a microwave

pulse and during free evolution, as the Hamiltonians governing

these two periods are different.

At the beginning of the experiment, all spin systems are in

thermal equilibrium. The thermal equilibrium density matrix

seq is given by the Boltzmann distribution

s0 = seq = b/tr b with b = e�h�H/kBT. (7)

seq is diagonal in the complete eigenbasis of the spin

Hamiltonian, and its diagonal elements represent the fractional

populations of the energy levels at thermal equilibrium.

Since HS dominates, H E HS, the N nuclear sublevels

of each manifold i all have essentially identical fractional

populations of pi/N, with a total manifold fractional

population of pi.

We do not place any restrictions such as the high-field

approximation on the computation of pi for HS from eqn (7).

Also, there are experimental situations in which the ensemble is

not at thermal equilibrium at the beginning of a pulse sequence.

If the repetition rate is very high, the out-of-equilibrium state

after the previous pulse sequence might not have relaxed back

to seq. This can be the case for pulse ENDOR spectra obtained

with high repetition rates at high fields and low temperatures

(e.g. 95 GHz below about 5 K).37–39 Another case is when the

paramagnetic center is generated in the experiment in a

spin-polarized state. These situations can be accommodated

by computing appropriate non-equilibrium pi for the energy

levels of HS.

Finally, to obtain the quadrature signal E of the echo

amplitude from the density matrix, the expectation value of

S+ = Sx + iSy is computed,

E = hS+i = tr (S+ s). (8)

Often only one signal phase is of interest. In that case, the

signal is hSxi = RehS+i.

3. Submatrices and pathways

The theory outlined so far is very general, but for most

common cases in pulse EPR it is not necessary to perform

the computations in the full spin state space. Very often, the

energy levels in HS are such that it is not possible for

microwave pulses to simultaneously excite two adjacent EPR

transitions that share a common level. Then each pair of levels

of HS that is resonant with the microwave frequency can be

treated as a separate two-level system of a fictitious electron

spin S = 1/2. Each level is split into a manifold of nuclear

sublevels. We denote the two manifolds with a (higher energy)

and b (lower energy), as illustrated in Fig. 1.

3.1. Basic equations

For such a system, the spin Hamiltonian transformed to the

‘‘rotating’’ frame15 and written in submatrix form is

H0 ¼
Ha þ OS=2 0

0 Hb � OS=2

� �
: ð9Þ

OS = oS � omw is a resonance frequency offset that accounts

for the fact that in an EPR sample the transition frequencies

oS are not all equal, but distributed over a range. This

inhomogeneity can be due to different orientations of the

individual spin systems in the spectrometer, to distributions

in magnetic parameters such as tensor principal values or

orientations, or to unresolved hyperfine splittings.

During microwave irradiation of strength o1 = (mB/h� )g|B1|

and phase f, the additional term in the rotating frame

Hamiltonian for the two-level system is

H1 = o1(Sx cos f + Sy sin f). (10)

f = 0 is denoted as x phase and f = p/2 as y phase.

The nuclear sub-Hamiltonians of the two manifolds

connected by the microwave resonant with the transition have

different eigenvalues e(a), e(b) and eigenstates Ma, Mb.

The matrix

M = Mw
aMb, (11)

sometimes called the Mims matrix,40 plays a central role in the

theory of ESEEM.21,22,28 It is the unitary overlap matrix

between the nuclear eigenstates of the a and those of the b
manifold. If M is equal to the identity matrix I (or a row or

column permutation of it), each nuclear state in the amanifold

is identical to one in the b manifold. Consequently, there is no

branching,21 and there are no nuclear modulation effects.

When all elements of M are nonzero, an a nuclear state is a

superposition of b nuclear states, and the microwave induces

nuclear modulation effects.

Dynamics. The density matrix for an ensemble of two-level

systems can be written as a block matrix with four components

s ¼ sa sþ
s� sb

� �
; ð12Þ

where sa, sb, s+ and s� are submatrices defined over the

nuclear subspaces. sa and sb represent all nuclear population

and coherence components within the upper and the lower

manifold, respectively, with electron coherence order 0, whereas

the elements in s+ and s� have electron coherence order +1

and �1, respectively.25,41
When looking at an isolated pair of levels from HS with N

nuclear sublevels each, the start density matrix can be written

as seq = (paSa + pbSb)/N, or

seq ¼
1

N

pa þ pb

2
I� DpSz

� �
¼ 1

N
ðpaIþ DpSbÞ ð13Þ

with the population difference Dp = pb–pa. We have used I ¼
Sa þ Sb and 2Sz = Sa–Sb. The terms proportional to I can be

dropped without affecting the expectation values of the trace-

less operators S+ or Sx in eqn (8). For our purposes it is
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advantageous to work with the last expression in eqn (13),

containing Sb. The resulting effective density is

seq ¼
Dp
N

Sb ¼
Dp
N

0 0
0 I

� �
; ð14Þ

different from the usual seq = �(Dp/N)Sz, which is the

conventional form of seq adequate for computations using

the product operator formalism with Sx, Sy and Sz.
1 Our

choice halves the number of non-zero elements in seq and

correspondingly reduces the computational effort. Also, it is

physically intuitive, as it represents a state where all b sublevels

are equally populated and all a sublevels are empty. It is

important to retain the prefactor in eqn (14). Dp is relevant for
cases where HS has more than two levels, as it may vary from

transition to transition, and 1/N is important for multinuclear

systems, as this allows comparison of ESEEM signals from

systems with different numbers of nuclei.

For computing the detected signal in eqn (8) at the

submatrix level, we obtain

E = tr(s�) E = tr(Ms�). (15)

in the nuclear Zeeman basis and nuclear eigenbasis,

respectively.

Spelled out into the four submatrix components, a general

propagator is of the form

U ¼ Ua Uþ
U� Ub

� �
: ð16Þ

The submatrices Ua etc. are neither unitary nor Hermitian.

Inserting eqn (12) and (16) into eqn (5), the propagation of the

four density submatrices can be written as

saðtÞ
sbðtÞ
sþðtÞ
s�ðtÞ

0
BB@

1
CCA ¼

aja þjþ ajþ þja
�j� bjb �jb bj�
aj� þjb ajb þj�
�ja bjþ �jþ bja

0
BB@

1
CCA

sað0Þ
sbð0Þ
sþð0Þ
s�ð0Þ

0
BB@

1
CCA ð17Þ

where the shorthand +|a indicates pre-multiplication with U+

and post-multiplication with Uw
a, etc.

Free evolution. The general propagator in the above equa-

tion can be simplified for the limiting case of free evolution.

Then, the propagator is block-diagonal in the nuclear

Zeeman basis

UfreeðtÞ ¼ e�iH0t ¼ Atft 0
0 Btf�t

� �
ð18Þ

with the offset phase ft = exp(�iOSt/2) and the nuclear

subpropagator matrices At and Bt. These can be diagonalized

At = e�iHat = Mae
�ieatMw

a = Maat M
w
a (19a)

Bt = e�iHbt = Mbe
�iebtMw

b = Mbbt M
w
b, (19b)

so that Ufree is completely diagonal in the nuclear eigenbasis

UfreeðtÞ ¼
atft 0
0 btf�t

� �
: ð20Þ

Consequently, the components of the density matrix change in

time according to

sa(t) = at sa a
w
t

sb(t) = bt sb bwt

s+(t) = ats+bwtf
2
t

s�(t) = bts+awtf
*2
t (21)

The four density submatrices evolve separately, and only s+
and s� acquire phase due to the resonance frequency offset.

Pulses. The propagator for a general microwave pulse of

duration tp is

P ¼ e�iðH0þH1Þtp ¼ Pa Pþ
P� Pb

� �
: ð22Þ

In general, the four components of this propagator cannot be

computed analytically and must be obtained by numerically

calculating the full matrix exponential. However, often pulses

are short and strong compared to the interaction strengths of

the spin Hamiltonian, so that H0 in eqn (22) can be neglected.

For these so-called ideal or hard pulses, the pulse propagator

can be computed explicitly. With the flip angle y = o1tp, and

the abbreviations c= cos(y/2), s= sin(y/2) and k= e+if, it is

PfðyÞ ¼ e�iyðSx cos fþSy sin fÞ ¼ cI �isk�I
�iskI cI

� �
ð23Þ

in the nuclear Zeeman basis, or

PfðyÞ ¼
cI �isk�M

�iskMy cI

� �
ð24Þ

in the nuclear eigenbasis. The presence of the matrix M in

eqn (24) indicates that the nuclear coherences and polarizations

get shuffled within each submatrix as a result of a pulse. If the

pulses have y phase (f = 901), the propagator becomes

PyðyÞ ¼
cI �sI
sI cI

� �
PyðyÞ ¼

cI �sM
sMy cI

� �
; ð25Þ

again in the nuclear Zeeman and eigenbasis, respectively. Two

very common special cases are ideal pulses with flip angles of

y = 901 and y = 1801

Pyð90�Þ ¼
1ffiffiffi
2
p

I �M

My I

 !

Pyð180�Þ ¼
0 �M

My 0

 !
:

ð26Þ

Inserting these expression into eqn (17), one can see that an

ideal 901 pulse transfers magnetization from each of the four

subcomponents of the density matrix to all others. An ideal

1801 only transfers a to/from b as well as + to/from �.

Transfer pathways. In general, therefore, a microwave

pulse transfers magnetization from any of the four density

submatrices to any other. During free evolution, magnetization

evolves within these submatrices and acquires an offset phase,

but is not transferred between levels or sublevels. Before the
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first pulse, the magnetization is in b only. The first pulse

transfers and distributes this magnetization to all four com-

ponents a, b, + and�, and after the pulse the four parts of the

magnetization evolve separately and independently. The next

pulse distributes the magnetization further, so that there are

now 16 different components, b - a - a, b - a - b,
b - a - + etc. We abbreviate these transfer pathways as

(aa), (ab), (a+) etc., dropping the b from the initial equili-

brium state, as it is the same for all pathways. At the end of

the pulse sequence the density matrix is a sum of matrices

describing independent magnetization components that

evolved along different transfer pathways q

s ¼
X
q

sðqÞ: ð27Þ

This concept of pathways is useful in developing phase cycles for

pulse EPR experiments.25,41 Phase cycling amounts to selecting

specific pathways, which can be done directly in a simulation.

Along each pathway, spins acquire distinct phases. They acquire

offset phase only when evolving as + or � electron coherence.

An echo is formed whenever spins with different offset frequencies

have simultaneously zero phase and refocus. This happens

when the spins have spent equal times in + and in �. Thus,
only these pathways contribute to the echo. Also, according to

eqn (15), only pathways ending in � are observable. From the

actual values of the inter-pulse delays and dwell times for a

pulse experiment, it is therefore straightforward to identify all

pathways that result in an observable echo at the detection

point,41 independent of the values of the incremented delays.

Usually, this is only a small fraction of all pathways.

Sometimes, the actual experiment excludes some of these

refocusing pathways by phase cycling or by the mere fact that

magnetization along them disappears due to relaxation. This

can be accommodated very easily by excluding pathways

from the list that do not feature the correct coherence

order during the various inter-pulse delays. For example, in

the one-dimensional four-pulse sum combination peak

experiment42,43 (901)y–t–(901)y–T–(1801)y–T–(901)y–t–(echo)x
the pathways (+ab�) and (++��) in theory contribute

equally to the echo, among others. The latter is usually

negligible due to transverse relaxation, or phase cycled out.

In a simulation, it can be removed by requiring that all

pathways included in the simulation have zero electron

coherence order (a or b) during the second free evolution

period. This pathway (and echo) selection is one of the major

advantages of the submatrix formalism over full-space

simulations,13,14,16 where the effect of phase cycling and

pathway selection can only be accommodated by explicit

zeroing of density matrix elements or by explicitly simulating

all steps of the phase cycle.

Once all contributing pathways are determined, the signal of

each of these pathways is computed in turn. The total signal is

the sum of the individual pathway signals, as the density is

the sum of contributions from all pathways, in the nuclear

eigenbasis

E ¼ tr M
X
q

sðqÞ�

 !
¼
X
q

tr MsðqÞ�
� �

¼
X
q

EðqÞ: ð28Þ

3.2 Algorithm

The eqn (14), (17), (20), (24) and (28) are all the quantum

mechanical ingredients necessary to compute the measured

signal of an electron-spin echo experiment. With these

equations, it is easy to write a simple computer program that

quickly computes the signal for any arbitrary pulse sequence

by constructing explicit submatrix expressions. The algorithm

works as follows.

First, as outlined above, the pulse sequence (defined by the

number of microwave pulses and their flip angles), the initial

interpulse delays and the incrementation scheme (defining

which delays are kept constant and which ones are incremented

or decremented along which dimension) are examined to

determine which pathways refocus at the detection point and

hence contribute to the echo of interest.41 Next, for each of the

pathways, a list of propagator submatrices constituting the

product representing the density at the detection point is

constructed. In this product, adjacent factors not containing

incremented delays are multiplied together, whereas propagator

submatrices that contain varied delays are kept separate.13 The

resulting expression can be expanded at the scalar level and is

used to construct the spectrum. We illustrate these first steps

leading to the scalar expression for two common ESEEM

experiments, suppressing the Dp/N prefactor from eqn (14)

temporarily, to unclutter the notation.

The two-pulse ESEEM experiment uses the sequence

(901)y–t–(1801)y–t–(echo)x, with the echo amplitude measured

as a function of t. The only pathway generating the echo is

(+�), i.e. b - + - �. Using eqn (18), (20) and (26), the

trace expression for the corresponding signal is

Eðþ�Þ ¼ 1

2
trðBtAtB

y
tA
y
tÞ ¼

1

2
trðMbtM

yatMbytM
yaytÞ: ð29Þ

in the Zeeman and in the eigenbasis, respectively. The

prefactor 1/2 stems from the b - + transfer amplitude of

the 901 pulse. Expanding all matrices and the trace, we get the

scalar expression

Eðþ�Þ ¼ 1

2

X
ijkl

ðMy
ijMjkM

y
klMliÞ � e�iðo

b
ik
þoa

jl
Þt
; ð30Þ

where oij = ei � ej.
The HYSCORE experiment is based on the sequence

(901)y–t–(901)y–t1–(1801)y–t2–(901)y–t–(echo)x, where t1 and

t2 are varied independently. The pathways contributing to

the echo are (+ab�) and (+ba�), giving a/b and b/a cross

peaks in the two-dimensional spectrum, respectively. Each

pathway signal is given by the trace of a product of evolution

matrices

Eðþab�Þ ¼ � 1

8
trðBtBt2At1AtB

y
tA
y
t1
B
y
t2
AytÞ ð31aÞ

Eðþba�Þ ¼ � 1

8
trðBtAt2Bt1AtB

y
tB
y
t1
A
y
t2
AytÞ ð31bÞ
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in the nuclear high-field basis, or

Eðþab�Þ ¼ � 1

8
trðMbtbt2M

yat1atMbytM
yayt1Mb

y
t2
MyaytÞ

ð32aÞ

Eðþba�Þ ¼ � 1

8
trðMbtM

yat2Mbt1M
yatMbytb

y
t1
Myayt2a

y
tÞ

ð32bÞ

in the nuclear eigenbasis. The total signal is the sum of these

two pathway signals. The prefactor �1/8 stems from the

electron spin transfer amplitudes of the four pulses. If all

terms independent of t1 and t2 are grouped, the signals can be

written as

Eðþab�Þ ¼ � 1

8
trðbt2Myat1G

aa
y
t1
Mb

y
t2
DbÞ ð33aÞ

Eðþba�Þ ¼ � 1

8
trðat2Mbt1G

bb
y
t1
Myayt2D

aÞ ð33bÞ

which in scalar form reads

Eðþab�Þ ¼ � 1

8

X
ijkl

ðMy
ijG

a
jkMklD

b
liÞ � e

�ioa
jk
t1 � e�io

b
il
t2 ð34aÞ

Eðþba�Þ ¼ � 1

8

X
ijkl

ðMijG
b
2jkM

y
klD

a
liÞ � e

�iob
jk
t1 � e�ioa

il
t2 : ð34bÞ

G contains the amplitudes of the nuclear coherences generated

by the first two pulses, and D is the nuclear coherence detector

efficiency of the part of the pulse sequence after the delay t2.

M andMw contain the transfer amplitudes from the t1 delay to

the t2 delay.

For any one- (1D) or two-dimensional (2D) pulse experiment,

even more unusual ones (e.g. the CF-NF experiment,44

DONUT-HYSCORE,45 or 2D refocused primary ESEEM,46)

equivalents of eqn (30) and (34) can be generated by a program

immediately from the information about the pulse experiment

and the pathways. All the resulting expressions are sums

over many different harmonic components, each with its own

amplitude Z and frequency �o

EðqÞðtÞ ¼ cq
X
x

Z
ðqÞ
x � e

�ioðqÞx t
or

EðqÞðt1; t2Þ ¼ cq
X
x

Z
ðqÞ
x � e

�ioðqÞ
1x t1 � e�io

ðqÞ
2x t2 :

ð35Þ

The amplitudes Z consist of products of matrix elements of

generator, detector and transfer matrices. The time-dependent

complex exponentials contain the nuclear frequencies (and

possibly combinations thereof) during the various incremented

time intervals.

Spectrum construction. Starting from an expression of the

form given in eqn (35), there are two common ways to construct

the echo modulation signal, as already noted by Mims.21 One is

to take amplitude and frequency of each component in turn and

evaluate the exponential over the entire 1D or 2D time

domain.11,13,14 The other is to construct a frequency-domain

stick spectrum (histogram) by accumulating the amplitudes into

a spectral array at the positions corresponding to the frequencies,

then inverse Fourier transforming the histogram and discarding

the points corresponding to negative times.12,21,28–31

Both methods have disadvantages. The time-domain method

is slow, as it has to compute a complex-valued time-domain

signal for every single component separately. This is

specially time consuming for two-dimensional signals like

HYSCORE and makes all but the most elementary simulations

prohibitively slow. The frequency-domain method is extremely

fast per component, but since a finite-size histogram is

constructed, peak positions have to be rounded to the nearest

bin of the histogram, leading to systematic errors in the final

signal. To reduce the size and hence the impact of the rounding

error, the resolution of the histogram can be increased and the

time domain obtained after inverse Fourier transform is then

truncated.12 However, artifacts decrease very slowly with

increasing histogram resolution. Especially in 2D spectra,

rounding artifacts such as ragged powder ridges and incomplete

phase cancelations can be visible even if the histogram is

16 times higher resolved than necessary for the final time

domain signal. In the simulation of powder spectra, artifacts

can be mitigated by substantially increasing the number of

orientations at the cost of performance, but systematic errors

can persist.

The disadvantages of both methods can be avoided by using

a filter technique that works similar to the frequency-domain

method, but uses a truncated continuous filter kernel function

instead of a single delta function for binning the frequencies in

a histogram fashion, thus avoiding any shifting of the peak

from its correct position. Details of the filter method are

described in ref. 27 As a result, powder ridges are smooth,

and destructive phase interference in 2D spectra is correctly

modeled. Compared to time-domain evolution, the method is

as accurate and requires as few orientations, while being much

faster. Compared to the histogram binning, the method is

somewhat slower for each component, but requires a smaller

frequency-domain array and saves time due to the smaller

orientational resolution needed and, for 2D spectra, the faster

inverse Fourier transformation.

Powder integration. In order to simulate the spectrum from

a powder sample, signals have to computed for and summed

over all possible orientations of the spin system with respect

to the external magnetic field. Depending on the number,

symmetry and relative orientation of the interaction tensors,

the integration domain extends over half the unit sphere, one

or two octants, or just a quarter meridian. We use a simple

triangular grid.5,7,47 Nuclear transitions observed experimentally

with ESEEM or pulse ENDOR are much less anisotropic than

EPR transitions. Consequently, it is sufficient to use few

orientations (typically steps between 0.25 and 11). In contrast

to cw EPR,7,47 orientational interpolation does not seem to

yield significant performance increases.

Orientation selection. If the eigenvalues ofHS are anisotropic,

e.g. in the case of an anisotropic g tensor of a S = 1/2, a D

tensor for S4 1/2 or large hyperfine splittings from a strongly

coupled nucleus, the microwave frequency will be resonant

with transitions from HS only for certain orientations of the
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spin system with respect to the external magnetic field. This

orientation and transition selectivity means that the echo signals

have to be computed only for these few orientations. The

magnetic parameters determining HS are usually known from

cw EPR spectra, so that the orientation and transition selectivity

can be pre-computed independent of the magnetic parameters of

the ESEEM or ENDOR nuclei. This results in substantial time

savings in iterative automatic or manual fittings.

4. Extensions of the theory

The submatrix theory outlined above was developed assuming

ideal pulses and two levels in HS. It can easily be extended to

non-ideal pulses and to high electron spin systems with more

than two levels, as we describe in the following. Also, we

discuss a factorization method for multinuclear spin systems

that helps accelerate simulations, and we give details on how

to compute pulse ENDOR spectra.

4.1. Non-ideal pulses

So far, we have assumed ideal pulses whose lengths tp are so

short that dynamics during the pulse other than the nutation of

the spins can be neglected, and that the excitation bandwidth

(E1/tp) of the pulse is so large that all subtransitions in a pair of

manifolds are flipped by the same angle o1tp. In practice,

however, the length of the microwave pulses is not always

negligible. Indeed, pulses are often chosen to be long to be

selective or semi-selective with respect to the subtransitions

(as in Davies ENDOR48,49) or to allow for optimal coherence

transfers during the pulse (such as in matched pulses50–52). This

results in two effects: not all subtransitions are excited

equally, and the spins not only nutate but have time to also

evolve during the pulse. The static Hamiltonian during the

pulse cannot be neglected, and the complete Hamiltonian

H=H0 +H1 must be used in the pulse propagator in eqn (22).

Such non-ideal pulses can be easily incorporated into the

formalism described above. First, the full propagator P in

eqn (22) is computed numerically for each pulse that cannot

be approximated as ideal. Then, these propagators are used in

the construction of the trace expressions for the echo amplitude.

Since the pulse propagators depend on the frequency offset OS,

the trace expressions have to be integrated over OS, weighed by

an appropriate distribution function for the frequency offset.

As an example, we look again at the two-pulse ESEEM

experiment, this time with pulses with arbitrary strength and

duration, described by the propagators P1 and P2 in submatrix

notation given in eqn (22). Similar to eqn (29), we can write

directly

E(+�) = tr(MbtP2� atP1+Pw
1bb

w
tP

w
2+awt). (36)

The ideal-pulse expression in eqn (29) is a special case of this

with P2� = Mw, P1+Pw
1b = M, and Pw

2+ = Mw, and the

prefactor of 1/2 resulting from the product of the transfer

amplitudes of the ideal pulses (see eqn (26)). For other

experiments, the trace expressions can be written down just

as easily. Apart from the numerical computation of the pulse

propagators and the integration over OS, the procedure of

ideal and non-ideal pulses is identical.

In pulse sequences with ideal 1801 pulses, the zero diagonal

submatrices in eqn (26) meant that some pathways were not

populated, even though the spins in these pathways would

refocused at the detection point. This is not the case anymore

with non-ideal pulses. E.g. in HYSCORE the additional

pathways (+aa�) and (+bb�) have to be included in the

simulation,12 although their amplitude will be smaller than the

one of the two main ones (+ab�) and (+ba�).
Partial excitation by selective microwave pulses can be

accounted for in two more approximate ways. Zhidomirov

et al.19 used sums of single-transition operators, and Keijzers

et al.29 used an explicit pulse excitation profile G and weighed

the elements of M according to the resonance offset,

M0
ij = Mij G(oij�omw). Both methods, however, do not take

evolution during the pulse into account.

4.2. High electron spin systems

The theory for pulse EPR of high electron spin systems has

been developed over the years, for ESEEM of organic

triplets,53–55 as well as for ESEEM15,20,31,40,56,57 and pulse

ENDOR58–60 of high-spin transition metal ions. An electron

spin S 4 1/2 affects pulse EPR spectra in several ways. First,

due to additional anisotropic zero-field interactions, the

experiment becomes orientation- and transition-selective for

a given microwave frequency and magnetic field, even if the

g tensor is isotropic. Second, there are more than two mani-

folds and correspondingly more nuclear sub-Hamiltonians

and nuclear frequencies. As discussed, these nuclear frequen-

cies depend on the expectation value hSi of each manifold. In

the limit of small zero-field splitting where the nonsecular

terms of the zero field splitting can be neglected, the electron

spin is aligned along the external field direction z in all states,

hmS|S|mSi= mSz and just has a mS-dependent magnitude. In

general, both the magnitude and the direction of hSi will

depend on the eigenstate of HS. Third, the EPR transition

moments for the different EPR transitions are different, so that

a given microwave pulse results in nutation frequencies and

flip angles that differ from transition to transition.

To take these effects into account,56 the matrix elements of

x�S in the eigenbasis of HS are computed, where x is the

direction of the oscillating magnetic field component of the

incident microwave. A zero matrix element between two levels

i and j indicates a zero transition moment and hence a

forbidden EPR transition. A non-zero element corresponds

to an allowed or semi-allowed EPR transition. Whether the

transitions are actually induced by a microwave pulse depends

on the energy difference oji = ej–ei, the microwave frequency

and the pulse length, which defines the excitation bandwidth of

the pulse. Each matrix element is therefore multiplied by a

excitation window function G(OS) that is maximum for on-

resonance irradiation (oji = omw) and zero if the microwave

frequency is far off. The resulting matrix usually contains only

two off-diagonal non-zero elements, between eigenstates i and

j. In this case, the two levels i and j can be treated as an isolated

two-level system, and pulse EPR signals can be simulated

using the expectation values hi|S|ii and hj|S|ji and the nutation

frequency o1,ij of the transition given by

o1,ij = 2o1|hi|xS|ji|G(oij � omw). (37)
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When there are several transitions that are excited

simultaneously, the formalism can still be applied as long as

the transitions do not share a common level. The total signal is

simply the sum over the signals from the isolated two-level

systems.

In systems with S 4 1/2 with any magnitude of zero-field

splitting, the assumption that transitions do not share a

common level is not valid for a few isolated orientations of

the spin system. For example, for an axial D tensor small

compared to the electron Zeeman frequency, this happens

when the angle between the applied magnetic field and the

unique axis of the D tensor is around 541. However, in a

powder spectrum, these special orientations carry very little

statistical weight and can be neglected.

It is straightforward to accommodate the effect of a nucleus

with large hyperfine splitting (such as Cu2+, Co2+or Mn2+in

corresponding mononuclear complexes) by simply including all

relevant interactions of the nucleus into the Hamiltonian HS.

The nucleus affects the orientational and transition selectivity

through the eigenvalues of HS. It also slightly affects the

frequencies of the ESEEM nuclei through influencing hi|S|ii.61

4.3 Product rule

In the ideal-pulse limit, the echo modulation signal from a spin

system with multiple nuclei can be expressed as a sum of

products of signals from single nuclei. These so-called product

rules are based on the factorization of the total nuclear

subspace into individual nuclear subspaces and have been

given for two-pulse ESEEM,18,20,21 three-pulse ESEEM,24,62,63

HYSCORE42 and the related 1D and 2D sum-combination

peak experiments.43 It is possible to derive a general form

applicable to arbitrary pulse sequences.

In a spin system with several nuclei, the total nuclear

sub-Hamiltonian for each electron spin manifold is the

sum over the nuclear sub-Hamiltonians of all nuclei, e.g.

Ha = Ha1 +Ha2+. . ., since the nuclei do not interact, neither

directly (the interaction is too small) nor indirectly (we have

neglected the effect of the nuclei on energy levels in HS). As a

consequence, the nuclear eigenvalues are simple sums,

ea = ea1 + ea2, and the nuclear eigenstates are tensor products

Ma = Ma1 # Ma2 and Mb = Mb1 # Mb2, so that we can

factor the propagators from eqn (18)

At = e�iHat = e�iHa1t # e�iHa2t = A1 # A2, (38)

with a similar expression for Bt.

As we have shown, in the ideal-pulse limit each pathway

contribution E(q) to the total signal is the trace of a product,

Fq, of A and B propagator matrices. Using the properties of the

tensor product (C1 # C2)(D1 # D2) = (C1D1) # (C2D2) and

tr(C#D) = tr(C)tr(D), each pathway signal can be written as a

single product of pathway signals from subsystems containing

one nucleus each, e.g., E(q) = cq tr(Fq) = cq tr(Fq1 # Fq2) =

cq tr(Fq1)tr(Fq2). Summing over all pathways contributing to the

detected echo, we obtain the general product rule

E ¼
X
q

EðqÞ ¼
X
q

cq
Y
i

trFqi; ð39Þ

where i indicates the nucleus and q indicates the pathway. For the

most common ESEEM experiments, the echo amplitudes are

usually presented normalized to the amplitude E0 when all

interpulse delays are zero,20–22, where Fqi ¼ I. In the special

case where all cq are equal, this gives after a few algebraic

manipulations the general normalized product rule

~E ¼ E

E0
¼ 1

np

X
q

Y
i

~E
ðqÞ
i ; ð40Þ

where np is the number of pathways. In essence, there is one

product for each pathway contributing to the observed echo.

The known product rules for two-pulse ESEEM (one product),

three-pulse ESEEM (two products, prefactor 1/2) and

HYSCORE (two products, prefactor 1/2) follow directly from

eqn (40), as do equivalent expressions for any other pulse

sequence in the ideal-pulse limit.

The implications of eqn (40) for the ESEEM spectrum can

easily be visualized if we recall the fact that a product in time

domain corresponds to a convolution in frequency domain. A

fundamental difference between ENDOR and ESEEM spectra

of systems with many nuclei becomes apparent. Whereas

the former are sums of single-nucleus spectra, the latter are

convolutions thereof, featuring cross-nuclear combination lines,

multi-quantum peaks, and inter-nuclear cross suppression.64,65

Therefore it is necessary to include all deeply modulating nuclei

in an ESEEM simulation, even when only other, weakly

modulating nuclei are of interest. A procedure entirely analogous

to the product rules above is an old method for the simulation

of first-order cw EPR spectra of multinuclear spin systems

using Fourier transformation.66

To apply the product rule to a given pulse sequence in a

simulation, the time-domain signals due to the contributing

pathways are computed in turn and then multiplied together.

This has to be done separately for each orientation, frequency

offset and/or EPR transition, and not only once at the end of a

simulation. Therefore, when a frequency-domain method is

used to construct the spectrum of a powder sample, many

inverse Fourier transformations might be necessary, so that

there are no time savings by using the product rule for two or

three nuclei. Only with four or more nuclei it is advantageous to

employ nuclear subspace factorization and the product rule.

The time-domain evolution method is much slower in all cases.

If pulses are not ideal, the product rule is not strictly applicable.

Different pathways can have widely different electron coherence

transfer amplitudes (analogous to cq in the ideal-pulse limit), so

that the assumption leading to eqn (40) is invalid. More

importantly, the propagators of long pulses cannot generally

be factorized, so that eqn (39) is also not applicable.50 However,

even if the product rule cannot or is not deployed, the

nuclear subspace factorization can be used to speed up the

diagonalization of the nuclear sub-Hamiltonians in eqn (4)

prior to the computation of the pathway signals.

4.4 Pulse ENDOR

The simulation of the standard pulse ENDOR experiments

based on polarization transfer1,48,49,67 is possible through a

straightforward extension of the theory presented above, first

employed by Liao and Hartmann68 for Mims ENDOR.

In both Mims and Davies ENDOR experiments, the echo

amplitude is observed as a function of the frequency orf of a
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radiofrequency (rf) pulse. When this is not resonant with any

nuclear transition, the echo is unaffected. When it is, the echo

is reduced in intensity, as the rf pulse transfers nuclear

polarization between sublevels so that the magnetization does

not refocus completely at the time of the echo. In the case of

Davies ENDOR, the echo is conventionally measured with

negative phase, so that the measured ENDOR signal appears

as a signal increase. The echoes in both Davies and Mims

ENDOR are composed of the signals from two pathways, for

which the signals can be written as

E(a)(orf) = tr[DaR(orf)GbR
w(orf)] (41a)

E(b)(orf) = tr[DbR(orf)GbR
w(orf)]. (41b)

G and D are the generator and detector submatrices that can

be computed as discussed above. R(orf) is a single-transition

propagator matrix defined in the nuclear eigenbasis corres-

ponding to an ideally selective rf pulse if the rf is resonant with

a nuclear transitions, or I if off-resonant. The flip angle yrf
effected by R(orf) depends on the matrix elements of Ix
between the two sublevels of the resonant nuclear transition

and on the hyperfine enhancement.48,69 Any pulse ENDOR

experiment with pathways of the structure in eqn (41) can be

simulated by pre-computing G and D and then evaluating the

expressions with R(orf) for all values of orf that correspond to

nuclear transition frequencies. For all other values, E = tr(DG).

With this approach, suppression effects due to non ideally

selective pulses in Davies ENDOR70 and the implicit TRIPLE

effect in Mims ENDOR64 can thus be accounted for.

5. Calculations

In the following, we show a few examples to illustrate some

aspects of the formalism introduced above. All simulations

were performed on a laptop computer (1.6 GHz Intel Pentium

M, 1 GB RAM, Windows XP) running EasySpin 3.1 and

Matlab 7.7 (The Mathworks Inc., Natick, MA).

5.1 High-electron spin, orientation selection

As described, the presence of anisotropic terms in HS causes

orientation and transition selection in a powder sample. At a

given magnetic field, the microwave quantum omw is resonant

with any of the EPR transitions for a small subset all possible

orientations only. Such a situation can be easily handled, as is

illustrated in Fig. 2 for the three-pulse ESEEM spectra of a

single 1H nuclear spin (I= 1/2) coupled to an S= 5/2 electron

spin with zero-field splitting of D= �100 MHz. The top trace

shows the full powder spectrum as a reference, simulated

assuming (unrealistically) that the microwave pulses can

simultaneously excite all |DmS| = 1 EPR transitions spread

over 800 MHz. The proton exhibits a resonance frequency that

depends on the mS manifold: the larger mS, the larger the

hyperfine contribution to the local field, which then adds or

subtracts to the external field depending on the signs of mS,

D and A. When the excitation width is narrowed to 50 MHz, it

can be seen that not all five EPR transitions are excited,

and correspondingly, fewer than six peaks appear in the

spectrum. For example, at 362.0 mT (bottom trace), only the

|3/2i 2 |5/2i electron spin transition is resonant, and two

nuclear peaks from mS = +5/2 and mS = +3/2 are seen. The

transition is resonant for a few orientations only, so that

minor parts of the broad powder peaks are visible. The

orientation selection is different for different EPR transitions,

as can be seen from the two maxima in the mS = +3/2 region

at 351.2 mT: one is due to the |3/2i2 |5/2i transition, and the

other stems from |1/2i 2 |3/2i, which is resonant for a

different subset of orientations and has companion intensity

in the mS = +1/2 region.

5.2 Many nuclear spins

Spectra from spin systems with many coupled nuclei often

occur in applications, and the ability to simulate their

pulse EPR spectra is indispensable for extracting structural

information. With the theory developed in this work, they can

be efficiently simulated. Mn(imidazole)6 is such a complex

system that has been studied with cw and pulse EPR. The

magnetic parameters of the six octahedrally ligating imidazole

nitrogens in this complex have recently been determined from

HYSCORE spectra of doped single crystals.10 The 3d5

Mn2+ion is high spin with S = 5/2, and the nucleus is

100% natural abundance 55Mn with I = 5/2. The nuclear

spins I=1 of the six directly coordinating 14N atoms of the six

imidazole ligands are detectable in HYSCORE spectra at the

Q-band (35 GHz, 1.2 T). A simulation of such a spectrum for

one of the |1/2i2 |3/2i electron spin transitions is shown in

Fig. 3. The corresponding experimental spectrum simulation is

given in Fig. 6 in ref. 10. The spectrum contains many resolved

peaks correlating fundamental single- and double-quantum as

well as inter-nuclear combination frequencies. Due to its

complexity, the spectrum cannot be analyzed manually, but

its rich structure allows the spectroscopic parameters to be

extracted by numerical simulation combined with automated

Fig. 2 Simulation of the orientation and transition selectivity in

three-pulse ESEEM of an S = 5/2 system containing a proton.

Parameters: 320 mT, g = 2, D = �100 MHz, A> = 2 MHz,

AJ = 3 MHz. t = 0.1 ns (blind-spot free), T incremented from

0 to 10.22 ms (512 points). Ideal-pulse powder simulations with

50 MHz wide Gaussian excitation window and 901 orientations.

Computation time: 0.2–1.1 s.
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fitting. There are slight differences in peak intensities between

the simulated and the experimental spectrum, with the simulated

spectrum featuring more intense peaks than the experimental

spectrum. Altogether however, the correspondence is surprisingly

good, showing that the theory developed in this work is valid

and can help analyze spectra from quite large spin systems.

5.3 Non-ideal pulses

Non-ideal pulses are included in the present framework. As an

example, we look at matched HYSCORE,51 where the second

and fourth pulse of a standard HYSCORE sequence are

replaced by long non-ideal pulses with high nominal turning

angles. The lengths are chosen such that the second pulse

maximizes the generation of single- or multi-quantum nuclear

coherence from allowed electron coherence, and the fourth

pulse maximizes the reverse transfer back to allowed electron

coherence that can be detected. Experimentally, the lengths of

these matched pulses are varied until optimum signal intensity

is found.

With simulations, suitable pulse lengths can be explored in

advance. This is illustrated in Fig. 4 for two protons coupled

to an electron spin S = 1/2. When all pulses have their

standard flip angles, only correlations peaks between single-

quantum (sq) frequencies of the protons are visible. As the

lengths and thus the nominal flip angles of the second and the

fourth pulse are increased, double-quantum (dq) coherences

are increasingly generated and detected. A dq–dq correlation

ridge crosses the diagonal, whereas two sq–dq ridges appear

above and below the diagonal. The presence and the positions

of these multi-quantum peaks help determine the number of

nuclei and the relative signs of their interaction tensors. With

simulations like this, the optimal pulse length for the detection

of multiquantum peaks can be determined.

5.4 Pulse ENDOR

The fact that the formalism can be applied as described to

pulse ENDOR is illustrated in Fig. 5 with exemplary

Fig. 3 Simulation of the Q-band HYSCORE spectrum of a single orientation of Mn2+(imidazole)6. The magnetic field is resonant with a |1/2i2
|3/2i electron spin transition. Spin parameters: g = 2.0036, A(Mn) = �259 MHz, D = �318 MHz, E = �51 MHz with Euler angles a = 1001,

b=231, g=01, hyperfine principal values A(N1) = A(N4) = (2.50,2.62,4.45) MHz, A(N2) = A(N5) = (4.37,2.65,2.64) MHz, A(N3) = A(N6) =

(2.75,4.40,2.60) MHz, quadrupole principal values Q(N1) = Q(N4) = (0.7,0.8,�1.5) MHz, Q(N2) = Q(N5) = (�1.5,0.5,1.0) MHz, Q(N3) =

Q(N6) = (0.8,�1.5,0.7) MHz. Experimental parameters: magnetic field 1251 mT along z axis of D tensor, t = 208 ns, t1 and t2 incremented from

0 to 5.1 ms in steps of 20 ns (256 points), ideal pulses, product rule. Contour levels at 2.5, 5, 10, 25 and 50% of maximum. Gray: (|3/2i,|1/2i)
correlations, black: (|1/2i,|3/2i) correlations. Computation time: 6.1 s.

Fig. 4 Simulations of the effect of pulse lengths on a matched

HYSCORE spectrum. Sequence: (901, 5 ns)x–t–(y,tp)–t1–(1801,
5 ns)–t2–(y,tp)–t, where tp is the pulse length and y the nominal flip

angle of the second and the fourth pulses. Parameters: S= 1/2, g= 2,

two equivalent 1HwithA>=�6MHz,A=6MHz; t=100 ns, 350 mT,

t1 and t2 incremented from 0 to 3.06 ms in 12-ns steps (256 points).

Powder simulation with 91 orientations, 21-point offset integration.

Contour levels at 0.25, 0.5, 1, 2.5, 5, 10, 25 and 50% of maximum.

Computation time: 17 s each.
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simulations of Mims ENDOR at 35 GHz and 1150 mT of a

spin system containing two nuclei, 1H and 19F. Each gives rise

to two ENDOR peaks, centered at their respective Larmor

frequencies, 49.0 and 46.1 MHz, shown in the top trace. Mims

ENDOR spectra exhibit t-dependent suppression effects that

modify these theoretical lineshapes. The intensity of all peaks

is modulated with an envelope of sin2(At/2), where A is the

hyperfine coupling for a given nucleus and orientation of the

spin system in angular frequencies.48 The spectra for

three different t values are shown in the lower traces. For

t = 100 ns, the 19F peaks are fairly undistorted, but the

envelope of the two 1H peaks is severely distorted by the

t suppression, so that the singularity at 50 MHz is greatly

reduced in intensity. At t = 200 ns, also the 19F peaks are

strongly affected. When t reaches 300 ns, the entire spectrum is

scattered with blindspots.

6. Conclusions and outlook

The theory outlined above introduces a general approach to

simulate spectra obtained from electron spin echo experiments.

It is based on the common and widely valid assumption that

only one or non-adjacent EPR transitions are excited in the

experiment. The method automatically analyzes any given

pulse experiment consisting of a sequence of microwave pulses

with fixed and incremented inter-pulse delays to determine

the electron coherence transfer pathways that contribute to

the observed echo of interest. For these pathways, explicit

expressions for the signal contributions are automatically

written down. The signal is constructed by using an improved

variation of the frequency-domain histogram method. All the

theory of this paper is implemented in EasySpin7 and is

accessible via a simple user interface.

The method presented here contains new theoretical

elements that make it more general than existing approaches

in several respects: (1) it is not limited to specific pulse

experiments. Scalar expressions for even the most complicated

pulse experiments are automatically derived. (2) High electron

spin systems are easily accommodated in a very general way,

without the necessity of neglecting nonsecular terms. Also,

nuclei can be included that affect the EPR resonance fields, but

are undetectable in ESEEM. (3) The method is applicable to

many nuclei, with any size and orientation of the nuclear

quadrupole tensor compared to their hyperfine tensor. (4)

Spectra from pulse ENDOR experiments based on polariza-

tion transfer can be simulated. (5) Non-ideal pulses are treated

in the same framework, making it possible to simulate experi-

ments with selective or matched pulses. (6) A general product

rule for arbitrary sequences has been derived in order to

accelerate simulations with systems containing many nuclei.

(7) The method used to construct the spectrum from the

trace expressions is more efficient than time domain

calculations and more accurate than frequency-domain

histogram techniques.

The theory does not cover every possible pulse EPR

experiment. In the form and scope presented above, it is

not directly applicable to time-domain pulse ENDOR,

experiments with field jumps during the pulse sequence, or

experiments involving multiple microwave frequencies such as

double electron-electron resonance (DEER). The theory does

not accommodate the detection of free induction decays or the

use of boxcar detection.71 Also, shaped pulses and chirp pulses

were not implemented. However, the theory for these types

of pulses is essentially known and amounts only to the

computation of additional propagators, so that they should

easily be accommodated within the framework.

With the approach presented in this work, automatic

least-squares fitting can be applied to a wide range of pulse

EPR experiments. Such fitting methods have not been widely

applied yet in pulse EPR, and it is currently not clear which

algorithms and which error function will yield the best results.

For cw EPR, hybrid methods are considered most efficient.

They combine a global search algorithm (e.g. genetic) that

determines regions of potential minima in parameter space

with a local algorithm (e.g. simplex or Levenberg–Marquardt)

that determines the minima in these regions. These methods

are also applicable to pulse EPR, and preliminary explorations

suggest that they perform similarly. Another important factor

affecting the robustness and effectiveness of automatic fitting

procedures is the choice of y in the computation of the

sum-of-squares objective function from experimental and

simulated data, Sk (yexp,k � ysim,k)
2. In cw EPR, y can be the

spectrum, its integral, its double integral, or its Fourier

transform. The double integral has the advantage that it is a

monotonic function of the abscissa and that the number of

local minimal in parameter space is therefore minimized. In

pulse EPR, the same method can be applied to frequency-

domain data (ENDOR or Fourier transform of ESEEM

time-domain), whereas in time-domain a direct fit to the

experimental data seems to be most robust. Also, ESEEM

fitting in the time domain has the advantage that the fitting

error can be assessed more directly.
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Fig. 5 Simulation of Mims ENDOR spectra for a S = 1/2 electron

spin coupled to both a 1H and a 19F nucleus. Parameters: A(1H) =

(2,2,10) MHz, A(19F) = (2,2,5) MHz, 1150 mT, powder simulations

with ideal pulses. Computation times: 0.1 s per spectrum.
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